Real-Time Workshop® Embedded Coder 4
User’s Guide

MATLAB
SIMULINK"

‘\The MathWorks

Accelerating the pace of engineering and science

LN

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Real-Time Workshop Embedded Coder User’s Guide
© COPYRIGHT 2002-2007 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined

in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

July 2002
December 2003
June 2004
October 2004
March 2005
September 2005
March 2006
September 2006
March 2007

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Version 3.0 (Release 13)

Revised for Version 3.2 (Release 13SP1+)
Revised for Version 4.0 (Release 14)
Revised for Version 4.1 (Release 14SP1)
Revised for Version 4.2 (Release 14SP2)
Revised for Version 4.3 (Release 14SP3)
Revised for Version 4.4 (Release 2006a)
Revised for Version 4.5 (Release 2006b)
Revised for Version 4.6 (Release 2007a)

Getting Started

What Is Real-Time Workshop Embedded Coder? 1-2

Real-Time Workshop Embedded Coder Feature

Summary e 1-3
What You Need to Know to Use This Product 1-5
Prerequisitescuiiiiiii i e 1-5
Real-Time Workshop Embedded Coder Documentation
Collectioncoiuiiiitiniiiiiieeeennnnnns 1-5
Related Documentation 1-7
Installing Real-Time Workshop Embedded Coder 1-8
Real-Time Workshop Embedded Coder Demos 1-9

Data Structures, Code Modules, and Program

2

Execution

Real-Time Model (rtModel) Data Structure 2-3
[0 072 a4 =) 2-3
rtModel Accessor Macroscouiiiiiiin.. 2-4
CodeModules i 2-5
Introduction 2-5
Generated Code Modules, 2-5
User-Written Code Modules 2-8

Generating the Main Program Module 2-9

vi

Program Execution Overview 2-11

Stand-Alone Program Execution 2-12
[0 0742 1074 1=} A8 2-12
Main Programt 2-13
rt_OneStep ... e e e 2-14

VxWorks Example Main Program Execution 2-21
(07423 1074 1) A8 2-21
Task Managemento iiiiiiiinnnnnnn. 2-21

Model Entry Points 2-24

Static Main Program Module 2-26
(00742 1074 =) 28 2-26
Rate Grouping and the Static Main Program 2-27
Modifying the Static Main Program 2-28

Rate Grouping Compliance and Compatibility

Issues e e 2-31
Main Program Compatibility 2-31
Making Your S-Functions Rate Grouping Compliant 2-31

Code Generation Options and Optimizations

3

Accessing the ERT Target Options 3-3
Viewing ERT Target Options in the Configuration
Parameters Dialog Box or Model Explorer 3-4

Support for Continuous Time Blocks, Continuous

Solvers, and Stop Time 3-5
Continuous Block Support 3-5
Continuous Solver Support, .. 3-5
Stop Time Supportc.oiiiiiiiiniiiee... 3-6

Contents

Mapping Application Requirements to Configuration
Optionst i

Guide to ERT Target Options
Introduction i
Real-Time Workshop Pane
Comments Pane,
Symbols Pane i
Interface Pane i
Code Style Pane,
Templates Pane i,
Data Placement Pane
Data Type Replacement Pane
Memory Sections Pane
OptimizationPane i,

Tips for Optimizing the Generated Code
Introduction i i
Using Auto-Optimized Targets
Using Configuration Wizard Blocks
Setting Hardware Implementation Parameters

Correctly ... e e
Removing Unnecessary Initialization Code
Generating Pure Integer Code If Possible
Disabling MAT-File Logging
Using Virtualized Output Ports Optimization
Using Stack Space Allocation Options
Using External Mode with the ERT Target

Generating an HTML Code Generation Report

Generating Code Within MISRA-C Guidelines

Automatic S-Function Wrapper Generation
OVeIVIEW ottt ettt et et e e e
Generating an ERT S-Function Wrapper
S-Function Wrapper Generation Limitations

Verifying Generated Code with Software-in-the-loop
Testing i,
OVeIVIEW ..ttt e e e e

vii

Validating Generated Code on the MATLAB Host Computer

Using Hardware Emulation 3-74
Validating ERT Production Code on the MATLAB Host
Computer Using Portable Word Sizes 3-75
Exporting Function-Call Subsystems 3-77
OVerVIEW ..ttt e e e e 3-77
Exported Subsystems Demo 3-77
Additional Information, 3-78
Requirements for Exporting Function-Call Subsystems .. 3-78
Techniques for Exporting Function-Call Subsystems 3-80
Optimizing Exported Function-Call Subsystems 3-81
Exporting Function-Call Subsystems That Depend on
Elapsed Timet iiiiiiiiiiinnnnn. 3-81
Function-Call Subsystem Export Example 3-82
Function-Call Subsystems Export Limitations 3-86

Nonvirtual Subsystem Modular Function Code

Generation i 3-88
OVeIVIEW o ittt ettt e e e 3-88
Configuring Nonvirtual Subsystems for Generating

Modular Function Codecovn.... 3-89
Examples of Modular Function Code for Nonvirtual

Subsystems e e 3-93
Nonvirtual Subsystem Modular Function Code

Limitations, 3-99

Controlling model_step Function Prototypes 3-101

OVeIVIEW o ittt ettt e e e 3-101
Model Step Functions Dialog Box 3-102
model_step Function Prototype Example 3-105
Configuring a model_step Function Prototype

Programmatically, 3-110
Sample M Script for Configuring a model_step Function

Prototypecoiiiiiiiiii i e 3-113
Configuring a Step Function Prototype for a Nonvirtual

Subsystem e e e 3-114
Verifying Generated Code for Customized Step

Functions i, 3-116
model_step Function Prototype Control Limitations 3-116

Creating and Using Host-Based Shared Libraries 3-118

viii Contents

OVeIVIEW ..ttt e e e
Generating a Shared Library Version of Your Model
Code ..ot e
Creating Application Code to Load and Use Your Shared
Library File
Host-Based Shared Library Limitations

Custom Storage Classes

q |

Introduction to Custom Storage Classes

Custom Storage Classes and Simulink Data Objects
L0 7] 7 =
Predefined CSCsottt e it
Setting Custom Storage Class Properties
Generating Code with CSCs

Designing Custom Storage Classes
L0 7] 7 1=
Using the Custom Storage Class Designer

Creating Packages with CSC Definitions

Defining Advanced Custom Storage Class Types
L0 7] 7 =
Create Your Own Parameter and Signal Classes
Create a Custom Attributes Class for Your CSC

(Optional) ...ttt i i e e e
Write TLC Code for Your CSC
Register Custom Storage Class Definitions

GetSet Custom Storage Class for Data Store Memory ..
Example of Generated Code with GetSet Custom Storage
Class oo e e e

Setting Code Generation Options for Custom Storage
Classesi ittt e

4-3

4-5
4-6

4-10

4-15
4-15
4-17

4-31

4-35
4-35
4-35
4-36

4-36
4-37

4-39

4-40

4-42

ix

Custom Storage Class Limitations 4-43

Older Custom Storage Classes (Prior to Release 14) ... 4-44
Simulink.CustomParameter Class 4-44
Simulink.CustomSignal Class 4-46
Instance-Specific Attributes for Older Storage Classes ... 4-49
Assigning a Custom Storage ClasstoData 4-51
Code Generation with Older Custom Storage Classes 4-51
Compatibility Issues for Older Custom Storage Classes .. 4-52

Memory Sections

5

Introduction to Memory Sections 5-2
L0 7] 7 = 5-2
Memory Sections Democ0iiiiiiiiiia.. 5-2
Additional Information 5-2

Requirements for Defining Memory Sections 5-4

Defining Memory Sections 5-6
Editing Memory Section Properties 5-6
Specifying the Memory Section Name 5-7
Specifying a Qualifier for Custom Storage Class Data

Definitionso 5-8
Specifying Comment and Pragma Text 5-8
Surrounding Individual Definitions with Pragmas 5-9
Including Identifier Names in Pragmas 5-9

Applying Memory Sections 5-10
Assigning Memory Sections to Custom Storage Classes .. 5-10
Applying Memory Sections to Model-Level Functions and

InternalData 5-11
Applying Memory Sections to Atomic Subsystems 5-15

Examples of Generated Code with Memory Sections .. 5-18
Sample ERT-Based Model with Subsystem 5-18
Model-Level Data Structures 5-19

Contents

Model-Level Functions,
Subsystem Function

Advanced Code Generation Techniques

6

Introduction

Code Generation with User-Defined Data Types
L0 7] 7 =
Specifying Type Definition Location for User-Defined Data

174 0T
Using User-Defined Data Types for Code Generation

Customizing the Target Build Process with the

STF make rtw Hook File

L0 7] 7 =

File and Function Naming Conventions

STF_make_rtw_hook.m Function Prototype and
Arguments e e

Applications for STF_make_rtw_hook.m

Using STF_make_rtw_hook.m for Your Build Procedure ..

Customizing the Target Build Process with
sl customization.m
(01742 74 1<)
Registering Build Process Hook Functions Using
sl _customization.mcouiiintten
Variables Available for sl_customization.m Hook
Functions i
Example Build Process Customization Using
sl_customization.mcouiiiitit

Auto-Configuring Models for Code Generation
L0 7] 7 =
Utilities for Accessing Model Configuration Properties
Automatic Model Configuration Using

ert_ make rtw hook
Using the Auto-Configuration Utilities

6-5
6-5

6-6
6-8

6-9
6-9
6-9

6-11

6-15
6-16

6-17
6-17

6-19

6-20

6-20

6-22
6-22
6-22

6-23
6-25

xi

xii

Contents

Generating Efficient Code with Optimized ERT
Targetscc i i e
OVeIVIEW o ittt ettt e e e
Default ERT Target 00,
Optimized Fixed-Point ERT Target
Optimized Floating-Point ERT Target
Using the Optimized ERT Targets

Custom File Processing
OVeIVIEW o ittt ettt e e e
Custom File Processing Components
Custom File Processing User Interface Options
Code Generation Template (CGT) Files
Using Custom File Processing (CFP) Templates
Custom File Processing (CFP) Template Structure
Generating Source and Header Files with a Custom File

Processing (CFP) Template
Code Template API Summary
Generating Custom File Banners

Optimizing Your Model with Configuration Wizard
Blocksand Scripts
OVeIVIEW o ittt ettt e e e
Configuration Wizards vs. Auto-Configuring Targets
Adding a Configuration Wizard Block to Your Model
Using Configuration Wizard Blocks
Creating a Custom Configuration Wizard Block

Replacement of STF_rtw_info_hook Mechanism

Optimizing Task Scheduling for Multirate Multitasking
Models on RTOS Targets
OVeIVIEW ottt ettt et et e e e
Using rtmStepTask
Task Scheduling Code for Multirate Multitasking Model on

VxWorks Target
Suppressing Redundant Scheduling Calls

ERT Target Requirements, Restrictions, and
Control Files

7

Requirements and Restrictions for ERT-Based Simulink

Modelst e 7-2
ERT System Target File and Template Makefiles 7-5
Examples

Al

Data Structures, Code Modules, and Program

Execution i, A-2
Code Generation A-2
Custom StorageClasses A-2
Memory Sections, A-3
Advanced Code Generation A-3

Index

xiii

xiv Contents

Getting Started

What Is Real-Time Workshop
Embedded Coder? (p. 1-2)

Real-Time Workshop Embedded
Coder Feature Summary (p. 1-3)

What You Need to Know to Use This
Product (p. 1-5)

Installing Real-Time Workshop
Embedded Coder (p. 1-8)

Real-Time Workshop Embedded
Coder Demos (p. 1-9)

Describes the features of Real-Time
Workshop® Embedded Coder.

Summary of the features of
Real-Time Workshop Embedded
Coder.

Prerequisite experience for use of
Real-Time Workshop Embedded
Coder; summary of related
documentation.

Installation instructions.

Information on interactive demos
and example code provided to help
you learn about Real-Time Workshop
Embedded Coder.

1 Getting Started

What Is Real-Time Workshop Embedded Coder?

Real-Time Workshop Embedded Coder is a separate, add-on product for
use with Real-Time Workshop. It is intended for use in embedded systems
development. Real-Time Workshop Embedded Coder generates code that is
easy to read, trace, and customize for your production environment.

Real-Time Workshop Embedded Coder provides a framework for the
development of production code that is optimized for speed, memory usage,
and simplicity. Real-Time Workshop Embedded Coder generates optimized
ANSI-C or ISO-C code for fixed-point and floating-point microprocessors.

It extends the capabilities provided by Real-Time Workshop to support
specification, integration, deployment, and testing of production applications
on embedded targets. Real-Time Workshop Embedded Coder addresses
targeting considerations such as RAM, ROM, and CPU constraints, code
configuration, and code verification.

The Embedded Real-Time (ERT) target provided by Real-Time Workshop
Embedded Coder is designed for customization. Most users want to generate
code for a particular microprocessor or development board, and to deploy the
code on target hardware with a cross-development system. To do this, some
modifications to the ERT target files are required. This document and its
companion, the Developing Embedded Targets document, describe how to
customize the ERT target for your production requirements.

For large-scale, multi-model projects involving teams of engineers, Real-Time
Workshop Embedded Coder offers Module Packaging Features (MPF) you can
use to control the number and organization of files generated, the location

of global identifiers, registration of user-defined data types, customized
comments, and the location of target variables.

Real-Time Workshop Embedded Coder Feature Summary

Real-Time Workshop Embedded Coder Feature Summary

In addition to supporting the features of Real-Time Workshop, Real-Time
Workshop Embedded Coder:

Generates ANSI/ISO C or C++ code and executables from Simulink® and
Stateflow® models with memory usage, execution speed, and readability
comparable to handwritten code

Extends Real-Time Workshop and Stateflow Coder with the optimizations
and code configuration features essential for production deployment

Supports all Simulink data objects and data dictionary capabilities,
including user-defined storage classes, types, and aliases

Provides an intuitive graphical user interface for creating custom data

Concisely partitions multirate code for efficient scheduling with or without
a real-time operating system (RTOS)

Provides a rich set of commenting capabilities to trace code to models and
requirements

Verifies code by automatically importing it into Simulink for
software-in-the-loop testing

Generates code documentation that is integrated with the Simulink Model
Explorer and hyperlinked to the model

Provides a Model Advisor that checks your model configuration and offers
advice on how to optimize or tune a configuration set based on your stated
goals or style.

Generates an extensible main program based on information you provide
for deploying the code in your real-time environment

Generates single-rate or multirate code using periodic sample times
specified in a model

Applies a strategy called rate grouping for multirate, multitasking models,
which generates separate functions for the base rate task and for each
sub-rate task in the model

Provides an option to easily transition between the Real-Time Workshop
generic real-time (GRT) target and the Real-Time Workshop Embedded
Coder embedded real-time (ERT) target

1 Getting Started

Provides extensible module packaging features that let you package
generated code to comply with specific software styles and standards

Provides capabilities for verifying generated code, including the

ability to import generated code back into Simulink as an S-function

for software-in-the-loop testing with a plant model, generation of
user-controlled comments and descriptions to improve code readability and
traceability, inclusion of requirements in generated code, and persistent
identifier names for minimizing code differences between model revisions

Documents generated code in an HTML report that comprehensively
describes code modules and model configuration settings applied during
code generation

Supports international (non-US-ASCII) characters encountered during code
generation when found in Simulink block names and block descriptions,
user comments on Stateflow diagrams, Stateflow object descriptions,
custom TLC files, and code generation template files. For details

about international character support, see Support for International
(Non-US-ASCII) Characters in the Real-Time Workshop documentation.

What You Need to Know to Use This Product

What You Need to Know to Use This Product

® “Prerequisites” on page 1-5
e “Real-Time Workshop Embedded Coder Documentation Collection” on
page 1-5

e “Related Documentation” on page 1-7

Prerequisites

To use Real-Time Workshop Embedded Coder, you should have basic
familiarity with MATLAB®, Simulink, and Real-Time Workshop. If you have
not done so, you should read:

¢ The tutorials in the document Getting Started with Real-Time Workshop.
The tutorials provide hands-on experience in configuring models for code
generation and generating code.

¢ The “Program Architecture” and “Models with Multiple Sample Rates”
chapters of the Real-Time Workshop documentation. These sections give a
general overview of the architecture and execution of programs generated
by Real-Time Workshop.

Real-Time Workshop Embedded Coder
Documentation Collection

The Real-Time Workshop Embedded Coder documentation collection consists
of the following:

Document Description

User’s Guide Describes ERT model execution, timing, and
task management; explains how to interface
to and call model code; describes default
ERT code generation options; and discusses
advanced configuration options.

Module Packaging Features | Explains how to use the Module Packaging
Features.

1-5

1 Getting Started

1-6

Document

Description

Reference

Provides reference descriptions of Real-Time
Workshop Embedded Coder functions and
blocks.

Developing Embedded
Targets

Describes requirements and implementation
details for creating custom embedded targets
based on the supplied ERT.

What You Need to Know to Use This Product

Related Documentation

You may be interested in the following documentation, especially if you are
planning to implement custom embedded targets:

Document Description

Real-Time Workshop User’s Guide: | Discusses inlining and code
Writing S-Functions for Real-Time | generation issues relevant to device

Workshop drivers and other S-functions
Real-Time Workshop User’s Guide: | Explains how to interface signals
Data Exchange APIs and parameters within generated

code to your own code; combine code
generated from multiple models into
a single system; and implement
external mode communication with
your own low-level protocol layer.

Target Language Compiler Provides details about the Target
Language Compiler (TLC) needed
to make nontrivial modifications to
the ERT system target file, use TLC
hooks into the build process, utilize
information from the model . rtw file,
implement inlined device drivers, or
pass information into or out of the
TLC phase of the build process.

Writing S-Functions Explains how to write fully inlined
S-functions. This information is
necessary for developing device
driver blocks for a target.

1 Getting Started

Installing Real-Time Workshop Embedded Coder

Your platform-specific MATLAB installation documentation provides all of
the information you need to install Real-Time Workshop Embedded Coder.

Prior to installing Real-Time Workshop Embedded Coder, you must obtain
a License File or Personal License Password (PLP) from The MathWorks.
The License File or PLP identifies the products you are permitted to install
and use.

If you customize your installation, the installer displays a dialog box that lets
you select the MATLAB products to install. You can select and install only
products for which you are licensed.

Real-Time Workshop Embedded Coder has product prerequisites, described in
the following table, that must be met for proper installation and execution.

Prerequisite

Licensed Product Products Additional Information

Simulink MATLAB —

Real-Time Workshop Simulink Requires host platform C
compiler (Microsoft Visual
C/C++ or Watcom C/C++).
Stateflow Coder is also
required when generating code
for Simulink models containing
Stateflow charts.

Real-Time Workshop Real-Time Requires a cross-compiler for

Embedded Coder Workshop the target processor.

If you experience installation difficulties and have Web access, use the
resources available on the MathWorks Web site Installation and Licensing
page at http://www.mathworks.com/support/install.html.

1-8

http://www.mathworks.com/support/install.html

Real-Time Workshop Embedded Coder Demos

Real-Time Workshop Embedded Coder Demos

The Real-Time Workshop demo suite contains many demos that can help
you become familiar with features of Real-Time Workshop Embedded Coder
and to inspect generated code. These demos illustrate features specific to
Real-Time Workshop Embedded Coder and also general Real-Time Workshop
features as used with Real-Time Workshop Embedded Coder.

If you are reading this document online in the MATLAB Help browser, you
can open the demo suite by clicking on this link: rtwdemos

Alternatively, you can access the demo suite by typing the name of the demo
library at the MATLAB command prompt:

rtwdemos

Most of the demos provide a button titled Generate Code Using Real-Time
Workshop Embedded Coder. When you click this button, the demo
auto-configures itself for code generation using the ERT target, and then
initiates the code generation process. If your installation is licensed for
Real-Time Workshop Embedded Coder, use this button.

If your installation is not licensed for Real-Time Workshop Embedded
Coder, you can run most of the demos by clicking on the Generate Code
Using Real-Time Workshop button. When you click this button, the demo
auto-configures itself for code generation using the GRT target, and then
initiates the code generation process. Note that the GRT target provides a
subset of the capabilities of the ERT target.

1-9

1 Getting Started

1-10

Data Structures, Code
Modules, and Program

Execution

Real-Time Model (rtModel) Data
Structure (p. 2-3)

Code Modules (p. 2-5)

Generating the Main Program
Module (p. 2-9)

Program Execution Overview
(p. 2-11)

Stand-Alone Program Execution
(p. 2-12)

VxWorks Example Main Program
Execution (p. 2-21)

Real-Time Workshop Embedded
Coder real-time model data
structure.

Code modules and header files
generated by Real-Time Workshop
Embedded Coder.

Explains how to generate an example
main program module as a basis for
custom modifications.

Overview of the operation of
Real-Time Workshop Embedded
Coder generated programs.

Execution and task management in
stand-alone (bareboard) generated
programs.

Execution and task management of
example programs deployed under
the VxWorks real-time operating
system.

2 Data Structures, Code Modules, and Program Execution

Model Entry Points (p. 2-24)

Static Main Program Module
(p. 2-26)

Rate Grouping Compliance and
Compatibility Issues (p. 2-31)

Description of model entry-point
functions generated by Real-Time
Workshop Embedded Coder and how
to call them.

Description of the alternative static
(non-generated) main program
module.

How to take advantage of the
efficiency of rate grouping by
updating your multirate inlined
S-functions and main program
module for compatibility.

Real-Time Model (rtModel) Data Structure

Real-Time Model (rtModel) Data Structure
® “Overview” on page 2-3
¢ “rtModel Accessor Macros” on page 2-4

Overview

Real-Time Workshop Embedded Coder encapsulates information about the
root model in the real-time model data structure, also referred to as rtModel.

To reduce memory requirements, rtModel contains only information required
by your model. For example, the fields related to data logging are generated
only if the model has the MAT-file logging code generation option enabled.
rtModel may also contain model-specific information related to timing,
solvers, and model data such as inputs, outputs, states, and parameters.

By default, rtModel contains an error status field that your code can monitor
or set. If you do not need to log or monitor error status in your application,
select the Suppress error status in real-time model data structure
option. This further reduces memory usage. Selecting this option may also
cause rtModel to disappear completely from the generated code.
The symbol definitions for rtModel in generated code are as follows:
® Structure definition (in model.h):

struct _RT_MODEL_model_Tag {

b
® Forward declaration typedef (in model types.h):

typedef struct _RT_MODEL_model Tag RT_MODEL_model;

e Variable and pointer declarations (in model.c or .cpp):

RT_MODEL_model model M_;
RT_MODEL_model *model_ M = &model M_;

e Variable export declaration (in model.h):

2 Data Structures, Code Modules, and Program Execution

extern RT_MODEL_model *model_M;

rtModel Accessor Macros

To enable you to interface your code to rtModel, Real-Time Workshop
Embedded Coder provides accessor macros. Your code can use the macros,
and access the fields they reference, with model .h.

If you are interfacing your code to a single model, refer to its rtModel
generically as model M, and use the macros to access its rtModel as in the
following code fragment.

#include "model.h"
const char *errStatus = rtmGetErrorStatus(model M) ;

To interface your code to the rtModel structures of more than one model,
simply include the model .h headers for each model, as in the following code
fragment.

#include "modelA.h" /* Make model A entry points visible */
#include "modelB.h" /* Make model B entry points visible */

void myHandWrittenFunction(void)

{
const char_T *errStatus;
modelA initialize(1); /* Call model A initializer */
modelB_initialize(1); /* Call model B initializer */
/* Refer to model A's rtModel */
errStatus = rtmGetErrorStatus(modelA M) ;
/* Refer to model B's rtModel */
errStatus = rtmGetErrorStatus(modelB M) ;
}

To view macros related to rtModel that are applicable to your specific model,
generate code with a code generation report (see “Generating an HTML
Code Generation Report” on page 3-65). Then, view model . h by clicking the
hyperlink in the report.

Code Modules

Code Modules

¢ “Introduction” on page 2-5
¢ “Generated Code Modules” on page 2-5
¢ “User-Written Code Modules” on page 2-8

Introduction

This section summarizes the code modules and header files that make up a
Real-Time Workshop Embedded Coder program, and describes where to find
them.

Note that in most cases, the easiest way to locate and examine the generated
code files is to use the Real-Time Workshop Embedded Coder code generation
report. The code generation report provides a table of hyperlinks that let you
view the generated code in the MATLAB Help browser. See “Generating an
HTML Code Generation Report” on page 3-65 for further information.

Generated Code Modules

Real-Time Workshop Embedded Coder creates a build directory in your
working directory to store generated source code. The build directory also
contains object files, a makefile, and other files created during the code
generation process. The default name of the build directory is model ert_rtw.

Real-Time Workshop Embedded Coder File Packaging on page 2-6
summarizes the structure of source code generated by Real-Time Workshop
Embedded Coder.

Note The file packaging of Real-Time Workshop Embedded Coder differs
slightly (but significantly) from the file packaging employed by the GRT,
GRT malloc, and other non-embedded targets. See the Real-Time Workshop
documentation for further information.

2-5

2 Data Structures, Code Modules, and Program Execution

Real-Time Workshop Embedded Coder File Packaging

File

Description

model.c or .cpp

Contains entry points for all code implementing the model
algorithm (for example, model step, model initialize,
model terminate, model SetEventsForThisBaseStep).

model_private.h

Contains local macros and local data that are required by the model
and subsystems. This file is included by the generated source files
in the model. You do not need to include model_private.h when
interfacing hand-written code to a model.

model.h

Declares model data structures and a public interface to the model
entry points and data structures. Also provides an interface to the
real-time model data structure (model M) with accessor macros.
model .h is included by subsystem .c or .cpp files in the model.

If you are interfacing your hand-written code to generated code for
one or more models, you should include model.h for each model
to which you want to interface.

model_data.c or .cpp
(conditional)

model data.c or .cpp is conditionally generated. It contains
the declarations for the parameters data structure, the constant
block I/O data structure, and any zero representations used for
the model’s structure data types. If these data structures and
zero representations are not used in the model, model data.c
or .cpp is not generated. Note that these structures and zero
representations are declared extern in model . h.

model types.h

Provides forward declarations for the real-time model data
structure and the parameters data structure. These may be needed
by function declarations of reusable functions. Also provides type
definitions for user-defined types used by the model.

rtwtypes.h

Defines data types, structures and macros required by Real-Time
Workshop Embedded Coder generated code. Most other generated
code modules require these definitions.

ert_main.c or .cpp
(optional)

This file is generated only if the Generate an example main
program option is on. (This option is on by default.) See
“Generating the Main Program Module” on page 2-9.

Code Modules

Real-Time Workshop Embedded Coder File Packaging (Continued)

File

Description

autobuild.h
(optional)

This file is generated only if the Generate an example main
program option is off. (See “Generating the Main Program
Module” on page 2-9.)

autobuild.h contains #include directives required by the static
version of the ert_main.c main program module. Since the static
ert_main.c is not created at code generation time, it includes
autobuild.h to access model-specific data structures and entry
points.

See “Static Main Program Module” on page 2-26 for further
information.

model capi.c or .cpp Provides data structures that enable a running program to access

model_capi.h
(optional)

model parameters and signals without use of external mode. To
learn how to generate and use the model capi.c or .cpp and
.h files, see the “Data Exchange APIs” chapter in the Real-Time
Workshop documentation.

You can also customize the generated set of files in several ways:

® Nonvirtual subsystem code generation: You can instruct Real-Time

Workshop to generate separate functions, within separate code files, for
any nonvirtual subsystems. You can control the names of the functions
and of the code files. See “Nonvirtual Subsystem Code Generation” in the
Real-Time Workshop documentation for further information.

Custom storage classes: You can use custom storage classes to partition
generated data structures into different files based on file names you
specify. See Chapter 4, “Custom Storage Classes” for further information.

Module Packaging Features (MPF) also lets you direct the generated code
into a required set of .c or .cpp and .h files, and control the internal
organization of the generated files. See the Module Packaging Features
document for details.

2 Data Structures, Code Modules, and Program Execution

User-Written Code Modules

Code that you write to interface with generated model code usually includes a
customized main module (based on a main program provided by Real-Time

Workshop Embedded Coder), and may also include interrupt handlers, device
driver blocks and other S-functions, and other supervisory or supporting code.

You should establish a working directory for your own code modules. Your
working directory should be on the MATLAB path. Minimally, you must also
modify the ERT template makefile and system target file so that the build
process can find your source and object files. More extensive modifications to
the ERT target files are needed if you want to generate code for a particular
microprocessor or development board, and to deploy the code on target
hardware with a cross-development system.

See the Developing Embedded Targets document for information on how to
customize the ERT target for your production requirements.

Generating the Main Program Module

Generating the Main Program Module

The Generate an example main program option controls whether or not
ert_main.c or ert_main.cpp is generated for your Simulink model. This
option is located in the Templates pane of the Configuration Parameters
dialog box, as shown in this figure.

#, Configuration Parameters: untitled/Configuration {Active) x|
Select ~Code templat =
- Sclver Source file [*.c] template: Iert_code_tamplate.cgt Browse... Edit.
-~ Diata Import/E spart
- O ptimization Header file [*.h) template:|ertfcodeftemplate.c:gt Browse... Edit..
[=]- Diagrostics
- Sample Time — D ata templat
- D aka Validity § 5
.. Type Conversion Source file [*.c] template: Iert_code_tamplate.cgt Browse... Edit..
Connec.h\.ﬂty Header file [k) template:|ert_code_template.c:gt Browse. . Edit..
- Campatibility
- Model Flafelencmg S ——_
-~ Hardware Implementation
- Model Referencing File customization lemplate:Iexampla_file_pmcess.llc Browse... | Edit.. |
E-Real Time Workshop [¥ Generate an example main progranm
Comments e [
Symbals Target operating system: I BareB oardE sample ;I
- Custom Code
- Debug
- |nterface

- Code Style

- Data Placement
-~ [ata Type Replacement
-+ bemory Sections

oK I Lancel Help | Apply |

Options for Generating a Main Program

By default, Generate an example main program is on. When Generate
an example main program is selected, the Target operating system
pop-up menu is enabled. This menu lets you choose the following options:

® BareBoardExample: Generate a bareboard main program designed to run
under control of a real-time clock, without a real-time operating system.

® VxWorksExample: Generate a fully commented example showing how to
deploy the code under the VxWorks real-time operating system.

2-9

2 Data Structures, Code Modules, and Program Execution

2-10

Regardless of which Target operating system you select, ert_main.c or
.cpp includes

e The main() function for the generated program

® Task scheduling code that determines how and when block computations
execute on each time step of the model

The operation of the main program and the scheduling algorithm employed
depend primarily upon whether your model is single-rate or multirate, and
also upon your model’s solver mode (SingleTasking vs. MultiTasking).
These are described in detail in “Program Execution Overview” on page 2-11.

If you turn the Generate an example main program option off, Real-Time
Workshop Embedded Coder provides a static version of the file ert_main.c
as a basis for your custom modifications (see “Static Main Program Module”
on page 2-26).

Note Once you have generated and customized the main program, you should
take care to turn Generate an example main program off to prevent
regenerating the main module and overwriting your customized version.

You can use a custom file processing (CFP) template file to override the normal
main program generation, and generate a main program module customized
for your target environment. To learn how to do this, see “Customizing Main
Program Module Generation” on page 6-48.

Program Execution Overview

Program Execution Overview

The following sections describe how programs generated by Real-Time
Workshop Embedded Coder execute, from the top level down to timer
interrupt level:

e “Stand-Alone Program Execution” on page 2-12 describes the operation of
self-sufficient example programs that do not require an external real-time
executive or operating system.

* “VxWorks Example Main Program Execution” on page 2-21 describes
the operation of example programs designed for deployment under the
VxWorks real-time operating system.

® “Model Entry Points” on page 2-24 describes the model entry-point functions
that are generated for both stand-alone and VxWorks example programs.

2-11

2 Data Structures, Code Modules, and Program Execution

Stand-Alone Program Execution

® “Overview” on page 2-12
e “Main Program” on page 2-13
* “rt_OneStep” on page 2-14

Overview

By default, Real-Time Workshop Embedded Coder generates stand-alone
programs that do not require an external real-time executive or operating
system. A stand-alone program requires some minimal modification to be
adapted to the target hardware; these modifications are described in the
following sections. The stand-alone program architecture supports execution
of models with either single or multiple sample rates.

To generate a stand-alone program:

1 In the Custom templates subpane of the Real-Time
Workshop/Templates pane of the Configuration Parameters
dialog box, select the Generate an example main program option (this
option is on by default).

2 When Generate an example main program is selected, the Target
operating system pop-up menu is enabled. Select BareBoardExample
from this menu (this option is the default selection).

The core of a stand-alone program is the main loop. On each iteration, the
main loop executes a background or null task and checks for a termination
condition.

The main loop is periodically interrupted by a timer. The Real-Time Workshop
function rt_OneStep is either installed as a timer interrupt service routine
(ISR), or called from a timer ISR at each clock step.

The execution driver, rt_OneStep, sequences calls to the model step
function(s). The operation of rt_OneStep differs depending on whether
the generating model is single-rate or multirate. In a single-rate model,
rt_OneStep simply calls the model step function. In a multirate model,

2-12

Stand-Alone Program Execution

rt_OneStep prioritizes and schedules execution of blocks according to the
rates at which they run.

Real-Time Workshop Embedded Coder generates significantly different code
for multirate models depending on the following factors:

® Whether the model executes in singletasking or multitasking mode.

® Whether or not reusable code is being generated.

These factors affect the scheduling algorithms used in generated code, and in
some cases affect the API for the model entry point functions. The following
sections discuss these variants.

Main Program

Overview of Operation
The following pseudocode shows the execution of a Real-Time Workshop
Embedded Coder main program.

main()
{
Initialization (including installation of rt_OneStep as an
interrupt service routine for a real-time clock)
Initialize and start timer hardware
Enable interupts
While(not Error) and (time < final time)
Background task
EndWhile
Disable interrupts (Disable rt_OneStep from executing)
Complete any background tasks
Shutdown

The pseudocode is a design for a harness program to drive your model. The
ert_main.c or .cpp program only partially implements this design. You must
modify it according to your specifications.

2-13

2 Data Structures, Code Modules, and Program Execution

2-14

Guidelines for Modifying the Main Program

This section describes the minimal modifications you should make in your
production version of ert_main.c or .cpp to implement your harness program.

o After calling model_initialize:

Initialize target-specific data structures and hardware such as ADCs
or DACs.

Install rt_OneStep as a timer ISR.
Initialize timer hardware.

Enable timer interrupts and start the timer.

Note rtModel is not in a valid state until model_initialize has
been called. Servicing of timer interrupts should not begin until
model_initialize has been called.

¢ Optionally, insert background task calls in the main loop.

¢ On termination of main loop (if applicable):

Disable timer interrupts.
Perform target-specific cleanup such as zeroing DACs.

Detect and handle errors. Note that even if your program is designed to
run indefinitely, you may need to handle severe error conditions such as
timer interrupt overruns.

You can use the macros rtmGetErrorStatus and rtmSetErrorStatus
to detect and signal errors.

rt_OneStep

Overview of Operation
The operation of rt_OneStep depends upon

¢ Whether your model is single-rate or multirate. In a single-rate model, the
sample times of all blocks in the model, and the model’s fixed step size, are

Stand-Alone Program Execution

the same. Any model in which the sample times and step size do not meet
these conditions is termed multirate.

® Your model’s solver mode (SingleTasking vs. MultiTasking)

Permitted Solver Modes for Real-Time Workshop Embedded Coder Targeted
Models on page 2-15 summarizes the permitted solver modes for single-rate
and multirate models. Note that for a single-rate model, only SingleTasking
solver mode is allowed.

Permitted Solver Modes for Real-Time Workshop Embedded Coder
Targeted Models

Mode Single-Rate Multirate

SingleTasking Allowed Allowed

MultiTasking Disallowed Allowed

Auto Allowed Allowed
(defaults to (defaults to MultiTasking)
SingleTasking)

The generated code for rt_OneStep (and associated timing data structures
and support functions) is tailored to the number of rates in the model and to
the solver mode. The following sections discuss each possible case.

Single-Rate Singletasking Operation
The only valid solver mode for a single-rate model is SingleTasking. Such
models run in “single-rate” operation.

The following pseudocode shows the design of rt_OneStep in a single-rate
program.

rt_OneStep()
{

Check for interrupt overflow or other error
Enable "rt_OneStep" (timer) interrupt
Model Step() -- Time step combines output,logging,update

}

2-15

2 Data Structures, Code Modules, and Program Execution

2-16

For the single-rate case, the generated model step function is

void model_step(void)

Single-rate rt_OneStep is designed to execute model step within a single
clock period. To enforce this timing constraint, rt_OneStep maintains and
checks a timer overrun flag. On entry, timer interrupts are disabled until the
overrun flag and other error conditions have been checked. If the overrun flag
is clear, rt_OneStep sets the flag, and proceeds with timer interrupts enabled.

The overrun flag is cleared only upon successful return from model step.
Therefore, if rt_OneStep is reinterrupted before completing model step, the
reinterruption is detected through the overrun flag.

Reinterruption of rt_0OneStep by the timer is an error condition. If this
condition is detected rt_OneStep signals an error and returns immediately.
(Note that you can change this behavior if you want to handle the condition
differently.)

Note that the design of rt_OneStep assumes that interrupts are disabled
before rt_OneStep is called. rt_OneStep should be noninterruptible until the
interrupt overflow flag has been checked.

Multirate Multitasking Operation

In a multirate multitasking system, Real-Time Workshop Embedded Coder
uses a prioritized, preemptive multitasking scheme to execute the different
sample rates in your model.

The following pseudocode shows the design of rt_OneStep in a multirate
multitasking program.

rt_OneStep()
{

Check for base-rate interrupt overrun
Enable "rt_OneStep" interrupt
Determine which rates need to run this time step

Model StepO() -- run base-rate time step code

For N=1:NumTasks-1 -- iterate over sub-rate tasks

Stand-Alone Program Execution

If (sub-rate task N is scheduled)
Check for sub-rate interrupt overrun
Model StepN() -- run sub-rate time step code
EndIf
EndFor

}

Task Identifiers. The execution of blocks having different sample rates is
broken into tasks. Each block that executes at a given sample rate is assigned
a task identifier (tid), which associates it with a task that executes at that
rate. Where there are NumTasks tasks in the system, the range of task
identifiers is 0..NumTasks-1.

Prioritization of Base-Rate and Sub-Rate Tasks. Tasks are prioritized,
in descending order, by rate. The base-rate task is the task that runs at the
fastest rate in the system (the hardware clock rate). The base-rate task has
highest priority (tid 0). The next fastest task (tid 1) has the next highest
priority, and so on down to the slowest, lowest priority task (tid NumTasks-1).

The slower tasks, running at submultiples of the base rate, are called sub-rate
tasks.

Rate Grouping and Rate-Specific model_step Functions. In a single-rate
model, all block output computations are performed within a single function,
model_step. For multirate, multitasking models, Real-Time Workshop
Embedded Coder uses a different strategy (whenever possible). This strategy
is called rate grouping. Rate grouping generates separate model step
functions for the base rate task and each sub-rate task in the model. The
function naming convention for these functions is

model_stepN

where N is a task identifier. For example, for a model named my_model that
has three rates, the following functions are generated:

void my_model stepO (void);

void my_model step1 (void);
void my_model step2 (void);

2-17

2 Data Structures, Code Modules, and Program Execution

2-18

Each model stepN function executes all blocks sharing tid N;in other words,
all block code that executes within task N is grouped into the associated
model_stepN function.

Scheduling model_stepN Execution. On each clock tick, rt_OneStep and
model step0 maintain scheduling counters and event flags for each sub-rate
task. The counters are implemented in the Timing.TaskCounters.TIDn fields
of rtModel. The event flags are implemented as arrays, indexed on tid.

The scheduling counters are maintained by the rate_monotonic_scheduler
function, which is called by model stepO (that is, in the base-rate task).
The function updates flags—an active task flag for each subrate and rate
transition flags for tasks that exchange data—and assumes the use of a
rate monotonic scheduler. The scheduling counters are, in effect, clock rate
dividers that count up the sample period associated with each sub-rate task.

The event flags indicate whether or not a given task is scheduled

for execution. rt_OneStep maintains the event flags with the
model_SetEventsForThisBaseStep function. When a counter indicates that
a task’s sample period has elapsed, model_ SetEventsForThisBaseStep sets
the event flag for that task.

On each invocation, rt_OneStep updates its scheduling data structures and
steps the base-rate task (rt_OneStep always calls model step0 because the
base-rate task must execute on every clock step). Then, rt_OneStep iterates
over the scheduling flags in tid order, unconditionally calling model_stepN
for any task whose flag is set. This ensures that tasks are executed in order of
priority.

Preemption. Note that the design of rt_OneStep assumes that interrupts are
disabled before rt_OneStep is called. rt_OneStep should be noninterruptible
until the base-rate interrupt overflow flag has been checked (see pseudocode
above).

The event flag array and loop variables used by rt_OneStep are stored as local
(stack) variables. This ensures that rt_OneStep is reentrant. If rt_OneStep is
reinterrupted, higher priority tasks preempt lower priority tasks. Upon return
from interrupt, lower priority tasks resume in the previously scheduled order.

Stand-Alone Program Execution

Overrun Detection. Multirate rt_OneStep also maintains an array of timer
overrun flags. rt_OneStep detects timer overrun, per task, by the same logic
as single-rate rt_OneStep.

Note If you have developed multirate S-functions, or if you use a
customized static main program module, see “Rate Grouping Compliance and
Compatibility Issues” on page 2-31 for information about how to adapt your
code for rate grouping compatibility. This adaptation lets your multirate,
multitasking models generate more efficient code.

Multirate Singletasking Operation

In a multirate singletasking program, by definition, all sample times in the
model must be an integer multiple of the model’s fixed-step size.

In a multirate singletasking program, blocks execute at different rates, but
under the same task identifier. The operation of rt_OneStep, in this case, is a
simplified version of multirate multitasking operation. Rate grouping is not
used. The only task is the base-rate task. Therefore, only one model step
function is generated:

void model step(int_T tid)

On each clock tick, rt_0OneStep checks the overrun flag and calls model step,
passing in tid 0. The scheduling function for a multirate singletasking
program is rate_scheduler (rather than rate_monotonic_scheduler). The
scheduler maintains scheduling counters on each clock tick. There is one
counter for each sample rate in the model. The counters are implemented in
an array (indexed on tid) within the Timing structure within rtModel.

The counters are, in effect, clock rate dividers that count up the sample period
associated with each sub-rate task. When a counter indicates that a sample
period for a given rate has elapsed, rate_scheduler clears the counter. This
condition indicates that all blocks running at that rate should execute on the
next call to model step, which is responsible for checking the counters.

2-19

2 Data Structures, Code Modules, and Program Execution

2-20

Guidelines for Modifying rt_OneStep

rt_OneStep does not require extensive modification. The only required
modification is to re-enable interrupts after the overrun flag(s) and error
conditions have been checked. If applicable, you should also

¢ Save and restore your FPU context on entry and exit to rt_OneStep.
¢ Set model inputs associated with the base rate before calling model step0.

® Get model outputs associated with the base rate after calling model stepO.

¢ In a multirate, multitasking model, set model inputs associated with
sub-rates before calling model stepN in the sub-rate loop.

¢ In a multirate, multitasking model, get model outputs associated with
sub-rates after calling model stepN in the sub-rate loop.

Comments in rt_OneStep indicate the appropriate place to add your code.

In multirate rt_OneStep, you can improve performance by unrolling for
and while loops.

In addition, you may choose to modify the overrun behavior to continue
execution after error recovery is complete.

You should not modify the way in which the counters, event flags, or other
timing data structures are set in rt_OneStep, or in functions called from
rt_OneStep. The rt_OneStep timing data structures (including rtModel) and
logic are critical to correct operation of any Real-Time Workshop Embedded
Coder program.

VxWorks Example Main Program Execution

VxWorks Example Main Program Execution

® “Overview” on page 2-21

e “Task Management” on page 2-21

Overview

The Real-Time Workshop Embedded Coder VxWorks example main
program is provided as a template for the deployment of generated code

in a real-time operating system (RTOS) environment. You should read

the preceding sections of this chapter as a prerequisite to working with

the VxWorks example main program. An understanding of the Real-Time
Workshop Embedded Coder scheduling and tasking concepts and algorithms,
described in “Stand-Alone Program Execution” on page 2-12, is essential to
understanding how generated code is adapted to an RTOS.

In addition, an understanding of how tasks are managed under VxWorks is
required. See your VxWorks documentation.

To generate a VxWorks example program:

1 In the Custom templates subpane of the Real-Time
Workshop/Templates pane of the Configuration Parameters
dialog box, select the Generate an example main program option (this
option is on by default).

2 When Generate an example main program is selected, the Target
operating system pop-up menu is enabled. Select VxWorksExample from
this menu.

Some modifications to the generated code are required; comments in the
generated code identify the required modifications.

Task Management

In a VxWorks example program, the main program and the base rate and
sub-rate tasks (if any) run as prioritized tasks under VxWorks. The logic of a
VxWorks example program parallels that of a stand-alone program; the main
difference lies in the fact that base rate and sub-rate tasks are activated by

2-21

2 Data Structures, Code Modules, and Program Execution

2-22

clock semaphores managed by the operating system, rather than directly by
timer interrupts.

Your application code must spawn model main() as an independent VxWorks
task. The task priority you specify is passed in to model main().

As with a stand-alone program, the VxWorks example program architecture
is tailored to the number of rates in the model and to the solver mode (see
Permitted Solver Modes for Real-Time Workshop Embedded Coder Targeted
Models on page 2-15). The following sections discuss each possible case.

Single-Rate Singletasking Operation

In a single-rate, singletasking model, model main() spawns a base rate
task, tBaseRate. In this case tBaseRate is the functional equivalent to
rtOneStep. The base rate task is activated by a clock semaphore provided by
VxWorks, rather than by a timer interrupt. On each activation, tBaseRate
calls model_step.

Note that the clock rate granted by VxWorks may not be the same as the
rate requested by model main.

Multirate Multitasking Operation

In a multirate, multitasking model, model main() spawns a base rate task
and sub-rate tasks. Task priorities are assigned by rate.

As in a stand-alone program, rate grouping code is used (where possible)

for multirate, multitasking models. The base rate task calls model step0,
while the sub-rate tasks call model stepN. The base rate task calls a function
that updates flags—an active task flag for each subrate and rate transition
flags for tasks that exchange data. This function assumes the use of a
rate-monotonic scheduler.

Multirate Singletasking Operation

In a multirate, singletasking model, model main() spawns only a base rate
task, tBaseRate. All rates run under this task. The base rate task is activated
by a clock semaphore provided by VxWorks, rather than by a timer interrupt.
On each activation, tBaseRate calls model_step.

VxWorks Example Main Program Execution

model step in turn calls the rate_scheduler utility, which maintains the
scheduling counters that determine which rates should execute. model_step
is responsible for checking the counters.

2-23

2 Data Structures, Code Modules, and Program Execution

2-24

Model Entry Points

The following functions represent entry points in the generated code for a
Simulink model.

Function Description

model initialize Initialization entry point in
generated code for Simulink model

model_SetEventsForThisBaseStep Set event flags for multirate,
multitasking operation before calling
model_step for Simulink model

model step Step routine entry point in generated
code for Simulink model

model terminate Termination entry point in generated
code for Simulink model

Note that the calling interface generated for each of these functions differs
significantly depending on how you set the Generate reusable code option
(see “Interface Pane” on page 3-32).

By default, Generate reusable code is off, and the model entry point
functions access model data with statically allocated global data structures.

When Generate reusable code is on, model data structures are passed in
(by reference) as arguments to the model entry point functions. For efficiency,
only those data structures that are actually used in the model are passed in.
Therefore when Generate reusable code is on, the argument lists generated
for the entry point functions vary according to the requirements of the model.

The entry points are exported with model.h. To call the entry-point functions
from your hand-written code, add an #include model.h directive to your
code. If Generate reusable code is on, you must examine the generated
code to determine the calling interface required for these functions.

Model Entry Points

For more information, see the reference pages for the listed functions.

Note The function reference pages document the default (Generate
reusable code off) calling interface generated for these functions.

2-25

2 Data Structures, Code Modules, and Program Execution

2-26

Static Main Program Module

® “Overview” on page 2-26
e “Rate Grouping and the Static Main Program” on page 2-27
® “Modifying the Static Main Program” on page 2-28

Overview

In most cases, the easiest strategy for deploying your generated code is to
use the Generate an example main program option to generate the
ert_main.c or .cpp module (see “Generating the Main Program Module”
on page 2-9).

However, if you turn the Generate an example main program option off,
you can use the module matlabroot/rtw/c/ert/ert_main.c as a template
example for developing your embedded applications. The module is not part of
the generated code; it is provided as a basis for your custom modifications,
and for use in simulation. If your existing applications, developed prior to this
release, depend upon a static ert_main.c, you may need to continue using
this module.

When developing applications using a static ert_main.c, you should copy this
module to your working directory and rename it to model ert_main.c before
making modifications. Also, you must modify the template makefile such that
the build process creates model ert_main.obj (on Unix, model_ ert_main.o)
in the build directory.

The static ert_main.c contains

® rt_OneStep, a timer interrupt service routine (ISR). rt_OneStep calls
model_step to execute processing for one clock period of the model.

¢ A skeletal main function. As provided, main is useful in simulation only.
You must modify main for real-time interrupt-driven execution.

For single-rate models, the operation of rt_OneStep and the main function
are essentially the same in the static version of ert_main.c as they are in the
autogenerated version described in “Stand-Alone Program Execution” on page
2-12. For multirate, multitasking models, however, the static and generated
code is slightly different. The next section describes this case.

Static Main Program Module

Rate Grouping and the Static Main Program

Targets based on the ERT target sometimes use a static ert_main module and
disallow use of the Generate an example main program option. This
may be necessary because target-specific modifications have been added to
the static ert_main.c, and these modifications would not be preserved if

the main program were regenerated.

Your ert_main module may or may not use rate grouping compatible
model stepN functions. If your ert_main module is based on the static
ert_main.c module, it does not use rate-specific model stepN function
calls. The static ert_main.c module uses the old-style model step function,
passing in a task identifier:

void model_step(int_T tid);

By default, when the Generate an example main program option is off,
the ERT target generates a model step “wrapper” for multirate, multitasking
models. The purpose of the wrapper is to interface the rate-specific
model_stepN functions to the old-style call. The wrapper code dispatches

to the appropriate model stepN call with a switch statement, as in the
following example:

void mymodel_step(int_T tid) /* Sample time: */
{

switch(tid) {
case 0 :
mymodel_stepO();
break;
case 1
mymodel_stepi();
break;
case 2 :
mymodel_step2();
break;
default :
break;
}
}

2-27

2 Data Structures, Code Modules, and Program Execution

2-28

The following pseudocode shows how rt_OneStep calls model_step from the
static main program in a multirate, multitasking model.

rt_OneStep()

{
Check for base-rate interrupt overflow
Enable "rt_OneStep" interrupt
Determine which rates need to run this time step
ModelStep(tid=0) --base-rate time step
For N=1:NumTasks-1 -- iterate over sub-rate tasks
Check for sub-rate interrupt overflow
If (sub-rate task N is scheduled)
ModelStep (tid=N) --sub-rate time step
EndIf
EndFor
}

You can use the TLC variable RateBasedStepFcn to specify that only the
rate-based step functions are generated, without the wrapper function. If your
target calls the rate grouping compatible model stepN function directly, set
RateBasedStepFcn to 1. In this case, the wrapper function is not generated.

You should set RateBasedStepFcn prior to the $include "codegenentry.tlc"
statement in your system target file. Alternatively, you can set
RateBasedStepFcn in your target settings.tlc file.

Modifying the Static Main Program

As in the generated ert_main.c, a few modifications to the main loop and
rt_OneStep are necessary. See “Guidelines for Modifying the Main Program”
on page 2-14 and “Guidelines for Modifying rt_OneStep” on page 2-20.

Also, you should replace the rt_OneStep call in the main loop with a
background task call or null statement.

Static Main Program Module

Other modifications you may need to make are

¢ If your model has multiple rates, the generated code does not operate
correctly unless:

= The multirate scheduling code is removed. The relevant code is tagged
with the keyword REMOVE in comments (see also the Version 3.0
comments in ert_main.c).

= Use the MODEL_SETEVENTS macro (defined in ert_main.c) to set the
event flags instead of accessing the flags directly. The relevant code is
tagged with the keyword REPLACE in comments.

® Remove old #include ertformat.h directives. ertformat.h will be
obsoleted in a future release. The following macros, formerly defined in
ertformat.h, are now defined within ert_main.c:

EXPAND_CONCAT
CONCAT
MODEL_INITIALIZE
MODEL_STEP
MODEL_TERMINATE
MODEL_SETEVENTS
RT_OBJ

See also the comments in ertformat.h.

e If applicable, follow comments in the code regarding where to add code for
reading/writing model I/O and saving/restoring FPU context.

® When the Generate an example main program option is off, Real-Time
Workshop Embedded Coder generates the file autobuild.h to provide an
interface between the main module and generated model code. If you
create your own static main program module, you would normally include
autobuild.h.

Alternatively, you can suppress generation of autobuild.h, and include
model.h directly in your main module. To suppress generation of
autobuild.h, use the following statement in your system target file:

%assign AutoBuildProcedure = 0

2-29

2 Data Structures, Code Modules, and Program Execution

2-30

If you have cleared the Terminate function required option, remove or
comment out the following in your production version of ert_main.c:

= The #if TERMFCN... compile-time error check
= The call to MODEL_TERMINATE

If you do not want to combine output and update functions, clear the Single
output/update function option and make the following changes in your
production version of ert_main.c:

= Replace calls to MODEL_STEP with calls to MODEL_OUTPUT and
MODEL_UPDATE.

= Remove the #if ONESTEPFCN. .. error check.

The static ert_main.c module does not support the Generate Reusable
Code option. Use this option only if you are generating a main program.
The following error check raises a compile-time error if Generate
Reusable Code is used illegally.

#if MULTI_INSTANCE_CODE==

The static ert_main.c module does not support the External mode option.
Use this option only if you are generating a main program. The following
error check raises a compile-time error if External mode is used illegally.

#ifdef EXT_MODE

Rate Grouping Compliance and Compatibility Issues

Rate Grouping Compliance and Compatibility Issues

e “Main Program Compatibility” on page 2-31
¢ “Making Your S-Functions Rate Grouping Compliant” on page 2-31

Main Program Compatibility

When the Generate an example main program option is off, Real-Time
Workshop Embedded Coder generates slightly different rate grouping code, for
compatibility with the older static ert_main.c module. See “Rate Grouping
and the Static Main Program” on page 2-27 for details.

Making Your S-Functions Rate Grouping Compliant

All built-in Simulink blocks, as well as all blocks in Signal Processing
Blockset, are compliant with the requirements for generating rate grouping
code. However, user-written multirate inlined S-functions may not be rate
grouping compliant. Non-compliant blocks generate less efficient code, but
are otherwise compatible with rate grouping. To take full advantage of

the efficiency of rate grouping, your multirate inlined S-functions must be
upgraded to be fully rate grouping compliant. You should upgrade your TLC
S-function implementations, as described in this section.

Use of non-compliant multirate blocks to generate rate-grouping code
generates dead code. This can cause two problems:

¢ Reduced code efficiency.

¢ Warning messages issued at compile time. Such warnings are caused when
dead code references temporary variables before initialization. Since the
dead code never runs, this problem does not affect the run-time behavior of
the generated code.

To make your S-functions rate grouping compliant, you can use the following
TLC functions to generate ModelOutputs and ModelUpdate code, respectively:

OutputsForTID(block, system, tid)
UpdateForTID(block, system, tid)

2-31

2 Data Structures, Code Modules, and Program Execution

2-32

The code listings below illustrate generation of output computations without
rate grouping (Listing 1) and with rate grouping (Listing 2). Note the
following:

® The tid argument is a task identifier (0. .NumTasks-1).

® Only code guarded by the tid passed in to OutputsForTID is generated.
The if (%<LibIsSFcnSampleHit (portName)>) test is not used in
OutputsForTID.

® When generating rate grouping code, OutputsForTID and/or UpdateForTID
is called during code generation. When generating non-rate-grouping code,
Outputs and/or Update is called.

® In rate grouping compliant code, the top-level Outputs and/or Update
functions call QutputsForTID and/or UpdateForTID functions for each rate
(tid) involved in the block. The code returned by OutputsForTID and/or
UpdateForTID must be guarded by the corresponding tid guard:

if (%<LibIsSFcnSampleHit(portName)>)
as in Listing 2.

Listing 1: Outputs Code Generation Without Rate Grouping

%% multirate_blk.tlc

%simplements "multirate_blk" "C"

of

% Function: mdlOutputs
% Abstract:

® o
o°

o
&

Compute the two outputs (input signal decimated by the

o°
o°

specified parameter). The decimation is handled by sample times.

P
o°

The decimation is only performed if the block is enabled.

o®
o°

Each ports has a different rate.

o°
o°

P
o°

Note, the usage of the enable should really be protected such that

o°
o°

Neach task has its own enable state. In this example, the enable

of

% occurs immediately which may or may not be the expected behavior.

Rate Grouping Compliance and Compatibility Issues

%%
sfunction Outputs(block, system) Output
/* %<Type> Block: %<Name> */

%assign enable = LibBlockInputSignal(o, "", "", 0)
{
int_T *enabled = &%<LibBlockIWork(0, "", "", 0)>;
%if LibGetSFcnTIDType("InputPortIdx0") == "continuous"

%% Only check the enable signal on a major time step.
if (%<LibIsMajorTimeStep()> && ...
%<LibIsSFcnSampleHit ("InputPortIdx0")>) {
*enabled = (%<enable> > 0.0);
}
%else
if (%<LibIsSFcnSampleHit("InputPortIdx0")>) {
*enabled = (%<enable> > 0.0);
}

%sendif

if (*enabled) {

%assign signal = LibBlockInputSignal(1, "", "", 0)

if (%<LibIsSFcnSampleHit("OutputPortIdx0")>) {
%assign y = LibBlockOutputSignal(o, "", "", 0)
%<y> = %<signal>;

}

if (%<LibIsSFcnSampleHit("OutputPortIdx1")>) {
%sassign y = LibBlockOutputSignal(t, "", "", 0)

%<y> = %<signal>;

%sendfunction
%% [EOF] sfun_multirate.tlc

Listing 2: Outputs Code Generation With Rate Grouping

%% example_multirateblk.tlc

%simplements "example_multirateblk" "C"

2-33

2 Data Structures, Code Modules, and Program Execution

o°
o°

Function: mdlOutputs
Abstract:

® o
o°® o°

o°
o°

Compute the two outputs (the input signal decimated by the

o
o°

specified parameter). The decimation is handled by sample times.

o°
o°

The decimation is only performed if the block is enabled.

o
o°

All ports have different sample rate.

o
o°

o
o°

Note: the usage of the enable should really be protected such that

o
o°

each task has its own enable state. In this example, the enable

o°
o°

occurs immediately which may or may not be the expected behavior.

o
o°

sfunction Outputs(block, system) Output

%assign portIdxName = ["InputPortIdx0","OutputPortIdx0","OutputPortIdx1"]
%assign portTID = [%<LibGetGlobalTIDFromLocalSFcnTID("InputPortIdx0")>,
%<LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx0")>,
%<LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx1")>]
%sforeach i = 3
%assign portName = portIdxName[i]
%sassign tid = portTID[1i]
if (%<LibIsSFcnSampleHit(portName)>) {
%<OutputsForTID(block,system,tid)>
}

%endforeach
%sendfunction

sfunction OutputsForTID(block, system, tid) Output
/* %<Type> Block: %<Name> */

%assign enable = LibBlockInputSignal(o, "", "", 0)

{
%assign enabled = LibBlockIWork(0O, "", "", 0)
%assign signal = LibBlockInputSignal(t, "", "", 0)
%sswitch(tid)

2-34

Rate Grouping Compliance and Compatibility Issues

%scase LibGetGlobalTIDFromLocalSFcnTID("InputPortIdx0")

%if LibGetSFcnTIDType("InputPortIdx0") == "continuous"”
%% Only check the enable signal on a major time step.

if (%<LibIsMajorTimeStep()> {
%<enabled> = (%<enable> > 0.0);
}
%else
%<enabled> = (%<enable> > 0.0);
%sendif
sbreak
%scase LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdx0")
if (%<enabled>) {
%assign y = LibBlockOutputSignal(O0,
%<y> = %<signal>;
}
sbreak
%scase LibGetGlobalTIDFromLocalSFcnTID("OutputPortIdxi1")
if (%<enabled>) {
%assign y = LibBlockOutputSignal(1,

%<y> = %<signal>;

}
%sbreak
%sdefault
%% error it out
%endswitch
%sendfunction

%% [EOF] sfun_multirate.tlc

wnwn)

wnwn)

2-35

2 Data Structures, Code Modules, and Program Execution

2-36

Code Generation Options
and Optimizations

Accessing the ERT Target Options
(p. 3-3)

Support for Continuous Time Blocks,
Continuous Solvers, and Stop Time
(p. 3-5)

Mapping Application Requirements
to Configuration Options (p. 3-7)

Guide to ERT Target Options
(p. 3-14)

Tips for Optimizing the Generated
Code (p. 3-55)

GUIs for viewing and configuring
ERT target options.

Summarizes ERT target support for
continuous time blocks, continuous
solvers, and stop time.

Discusses the process of mapping
application requirements to code
generation options in a model
configuration set, particularly with
respect to traceability, efficiency, and
safety.

Describes code generation options
that are specific to the ERT target.

Utilities and code generation options
you can use to automatically
configure models, improve
performance and reduce code

size.

3 Code Generation Options and Optimizations

Generating an HTML Code
Generation Report (p. 3-65)

Generating Code Within MISRA-C
Guidelines (p. 3-68)

Automatic S-Function Wrapper
Generation (p. 3-69)

Verifying Generated Code with
Software-in-the-loop Testing
(p. 3-73)

Exporting Function-Call Subsystems
(p. 3-77)

Nonvirtual Subsystem Modular
Function Code Generation (p. 3-88)

Controlling model_step Function
Prototypes (p. 3-101)

Creating and Using Host-Based
Shared Libraries (p. 3-118)

Describes how to generate a report
including information on the
generated code and suggestions
for optimization. You can view the
report in any HTML browser. The
report includes hyperlinks from the
generated code to the source blocks
in your model.

Provides resources to help you use
Real-Time Workshop Embedded
Coder within MISRA-C guidelines.

Explains how to integrate your
Real-Time Workshop Embedded
Coder code into a model by
generating ERT S-function
wrappers.

Explains how to use host-based
software-in-the-loop (SIL) testing to
validate generated code.

Describes code export capabilities for
function-call subsystems.

Explains how to generate atomic
subsystem function code that
separates the subsystem’s internal
data from the data of its parent
Simulink model.

Explains how to configure
model_step function prototypes
in generated code.

Describes how to generate a shared
library version of your model code for
use by applications on your Windows
or UNIX platform.

Accessing the ERT Target Options

Accessing the ERT Target Options
This chapter describes the Embedded Real-Time (ERT) target code generation
options, and how to view and configure them. The discussion also includes
other options that are not specific to the ERT target, but which affect ERT
code generation.

Every model contains one or more named configuration sets that specify model
parameters such as solver options, code generation options, and other choices.
A model can contain multiple configuration sets, but only one configuration
set is active at any time. A configuration set includes code generation options
that affect Real-Time Workshop in general, and options that are specific to a
given target, such as the ERT target.

Configuration sets can be particularly useful in embedded systems
development. By defining multiple configuration sets in a model, you

can easily retarget code generation from that model. For example, one
configuration set might specify the default ERT target with external mode
support enabled for rapid prototyping, while another configuration set might
specify the Target for Freescale™ MPC5xx to generate production code for
deployment of the application. Activation of either configuration set fully
reconfigures the model for the appropriate type of code generation.

Before you work with the ERT target options, you should become familiar with

¢ Configuration sets and how to view and edit them in the Configuration
Parameters dialog box. The Using Simulink document contains detailed
information on these topics.

¢ The general Real-Time Workshop code generation options and the use of
the System Target File Browser. The Real-Time Workshop documentation
contains detailed information on these topics.

3 Code Generation Options and Optimizations

3-4

Viewing ERT Target Options in the Configuration
Parameters Dialog Box or Model Explorer

The Configuration Parameters dialog box and Model Explorer provide the
quickest routes to a model’s active configuration set. Illustrations throughout
this chapter show the Configuration Parameters dialog box view of model
parameters (unless otherwise noted).

“Guide to ERT Target Options” on page 3-14 discusses each category of ERT
target options displayed in the panes of the Configuration Parameters dialog
box and Model Explorer.

Support for Continuous Time Blocks, Continuous Solvers, and Stop Time

Support for Continuous Time Blocks, Continuous Solvers,
and Stop Time

® “Continuous Block Support” on page 3-5
® “Continuous Solver Support” on page 3-5

® “Stop Time Support” on page 3-6

Continuous Block Support

The ERT target supports code generation for continuous time blocks. If the
Support continuous time option is selected, you can use any such blocks
in your models, without restriction.

Note that use of certain blocks is not recommended for production code
generation for embedded systems. The Simulink Block Data Type Support
table summarizes characteristics of blocks in the Simulink and Fixed-Point
block libraries, including whether or not they are recommended for use

in production code generation. To view this table, execute the following
command at the MATLAB command line:

showblockdatatypetable

Then, refer to the “Recommended for Production Code?” column of the table.

Continuous Solver Support

The ERT target supports continuous solvers. In the Solver options dialog,
you can select any available solver in the Solver menu. (Note that the solver
Type must be fixed-step for use with the ERT target.)

Note Custom targets must be modified to support continuous time. The
required modifications are described in the Developing Embedded Targets
document.

3-5

3 Code Generation Options and Optimizations

Stop Time Support

The ERT target supports the stop time for a model. When generating
host-based executables, the stop time value is honored when any one of the
following is true:

* GRT compatible call interface is selected on the Interface pane

¢ External mode is selected in the Data exchange subpane of the
Interface pane

* MAT-file logging is selected on the Interface pane

Otherwise, the executable runs indefinitely.

Note The ERT target provides both generated and static examples of
the ert_main.c file. The ert_main.c file controls the overall model code
execution by calling the model step function and optionally checking the
ErrorStatus/StopRequested flags to terminate execution. For a custom
target, if you provide your own custom static main.c, you should consider
including support for checking these flags.

Mapping Application Requirements to Configuration Options

Mapping Application Requirements to Configuration

Options

The first step to applying Real-Time Workshop Embedded Coder to the
application development process is to consider how your application
requirements, particularly with respect to traceability, efficiency, and safety,
map to code generation options in a model configuration set.

Parameters that you set in the Solver, Data Import/Export, Diagnostics,
and Real-Time Workshop panes of the Configuration Parameters dialog
box affect the behavior of a model in simulation and the code generated for
the model.

Consider questions such as the following:

® What settings might help you debug your application?

® What is the highest priority for your application — debugging, traceability,
efficiency, extra safety precaution, or some other criteria?

® What is the second highest priority?
® (Can the priority at the start of the project differ from the priority required
for the end result? What trade-offs can be made?

Once you have answered these questions, review Mapping of Application

Requirements to Configuration Parameters on page 3-8. This table maps

requirements of traceability, efficiency, and safety to configuration options
that are available for the Embedded Real-Time (ERT) target.

The default settings that appear in the table are default factory settings.

3-7

3 Code Generation Options and Optimizations

3-8

Mapping of Application Requirements to Configuration Parameters

Configuration Safety Factory
Parameter Debugging Traceability | Efficiency | Precaution Default
Optimization
Block reduction No impact Clear Set No impact Set
Implement logic No impact No impact Set No impact Set
signals as boolean
data (vs. double)
Inline parameters | Set Set Set No impact Clear
Conditional input No impact Set Set No impact Set
branch execution
Signal storage Clear Clear Set No impact Set
reuse
Application No impact No impact Set to No impact 1
lifespan (days) correct

value
Enable local block | Clear No impact Set No impact Set
outputs
Ignore integer Clear No impact Set Clear Clear
downcasts in folded
expressions
Eliminate Clear Clear Set No impact Set
superfluous
temporary
variables
(Expression
folding)
Loop unrolling No impact No impact >0 No impact 5
threshold
Reuse block Clear Clear Set No impact Set
outputs

Mapping Application Requirements to Configuration Options

Mapping of Application Requirements to Configuration Parameters (Continued)

Configuration
Parameter

Debugging

Traceability

Efficiency

Safety
Precaution

Factory
Default

Inline invariant
signals

Clear

Clear

Set

No impact

Set

Remove root
level 1I/0 zero
initialization

No impact

No impact

Set

Clear

Clear

Remove internal
state zero
initialization

No impact

No impact

Set

Clear

Clear

Use memset to
initialize floats and
doubles to 0.0

No impact

No impact

Set

Clear

Clear

Optimize
initialization code
for model reference

No impact

No impact

Set

Clear

Set

Remove code that
protects against
division arithmetic
exceptions
(fixed-point)

No impact

No impact

Set

Clear

Clear

Hardware Implementa

tion

Number of bits

No impact

No impact

Set

No impact

8, 16, 32,
32

Signed integer
division rounds to

Undefined

Zero or Floor

Zero

Floor

Undefined

Real-Time Workshop

Generate HTML
report

Set

Set

No impact

Clear

Include hyperlinks

Set

to model

Set

No impact

Clear

3-9

3 Code Generation Options and Optimizations

Mapping of Application Requirements to Configuration Parameters (Continued)

Configuration Safety Factory

Parameter Debugging Traceability | Efficiency | Precaution Default

Launch report Set Set No No impact Clear

automatically impact

Ignore custom No impact No impact No No impact Clear

storage classes impact

Real-Time Workshop: Comments

Include comments | Set Set No No impact Set
impact

Simulink block Set Set No No impact Set

comments impact

Show eliminated No impact Set No No impact Clear

blocks impact

Verbose comments | Set Set No No impact Clear

for Simulink Global impact

storage class

Simulink block Set Set No No impact Clear

descriptions impact

Simulink data Set Set No No impact Clear

object descriptions impact

Custom comments | Set Set No No impact Clear

(MPT objects only) impact

Stateflow object Set Set No No impact Clear

descriptions impact

Requirements in Set Set No No impact Clear

block comments impact

Real-Time Workshop: Symbols

Global variables No impact Set No No impact RN$M

Mapping Application Requirements to Configuration Options

Mapping of Application Requirements to Configuration Parameters (Continued)

Configuration Safety Factory
Parameter Debugging | Traceability | Efficiency| Precaution Default
Global types No impact Set No No impact &NRM
impact
Field name of No impact Set No No impact NM
global types impact
Subsystem No impact Set No No impact $RENSMSF
methods impact
Local temporary No impact Set No No impact NM
variables impact
Local block output | No impact Set No No impact rtb_NM
variables impact
Constant macros No impact Set No No impact $RENS$SM
impact
Minimum mangle No impact 1 No No impact 1
length impact
Maximum Set >30 No No impact 31
identifier length impact
Generate scalar No impact Macros Literals No impact Literals
inlined parameters
as
#define naming No impact Force No No impact None
uppercase impact
Parameter naming | No impact Force No No impact None
uppercase impact
Signal naming No impact Force No No impact None
uppercase impact
Real-Time Workshop: Debug
Verbose builds Set No impact No Set Set
impact

3-11

3 Code Generation Options and Optimizations

Mapping of Application Requirements to Configuration Parameters (Continued)

Configuration Safety Factory

Parameter Debugging | Traceability | Efficiency| Precaution Default

Retain .rtw file Set Set No No impact Clear
impact

Real-Time Workshop: Interface

Target No impact No impact Set No impact ANSI-C
floating-point math

environment

Utility function No impact No impact Shared No impact Auto
generation

Support No impact No impact Clear for | No impact Set
floating-point integer

numbers only

Support complex No impact No impact Clear for | No impact Set
numbers real only

Support non-finite | No impact No impact Clear No impact Set
numbers

Support absolute No impact No impact Clear No impact Set
time

Support No impact No impact Clear No impact Clear

continuous time

Support No impact No impact Clear No impact Clear
non-inlined
S-functions

Terminate function | No impact No impact Clear Set Set
required
Generate reusable | No impact No impact Set for No impact Clear
code single

instance

3-12

Mapping Application Requirements to Configuration Options

Mapping of Application Requirements to Configuration Parameters (Continued)

Configuration Safety Factory

Parameter Debugging Traceability | Efficiency | Precaution Default

Suppress error Clear No impact Set Clear Clear

status in real-time

model data

structure

Single Set Set Set No impact Set

update/output

function

GRT compatible No impact Clear Clear No impact Clear

call interface

Create Simulink Set No impact No No impact Clear

(S-Function) block impact

Enable portable Set No impact Clear No impact Clear

word sizes

MAT-file logging Set No impact Clear No impact Clear

Real-Time Workshop: Data Placement

Data definition No impact Set No No impact Auto
impact

Data declaration No impact Set No No impact Auto
impact

#include file No impact Set No No impact Auto

delimiter impact

Module naming No impact Set No No impact Not
impact specified

Signal display level | No impact Set No No impact 10
impact

Parameter tune No impact Set No No impact 10

level impact

3-13

3 Code Generation Options and Optimizations

Guide to ERT Target Options

¢ “Introduction” on page 3-14

e “Real-Time Workshop Pane” on page 3-15

¢ “Comments Pane” on page 3-19

* “Symbols Pane” on page 3-22

¢ “Interface Pane” on page 3-32

¢ “Code Style Pane” on page 3-40

¢ “Templates Pane” on page 3-43

¢ “Data Placement Pane” on page 3-45

¢ “Data Type Replacement Pane” on page 3-46
e “Memory Sections Pane” on page 3-48

* “Optimization Pane” on page 3-51

Introduction

This section describes options that are specific to the ERT target, as they
appear in the Configuration Parameters dialog box. (The Configuration
Parameters dialog box and Model Explorer views of these options closely
correspond.)

Some panes of the Configuration Parameters dialog box (for example, the
Templates and Interface panes) contain only ERT-specific options. Others
(for example, the Real-Time Workshop pane) display a combination of
general Real-Time Workshop options and ERT target options. The discussion
in this section focuses on the ERT-specific options, with references to related
options and documentation included as necessary.

In the illustrations in this section, options are shown set to their default
values, unless otherwise noted.

This section groups the ERT target options according to the Configuration
Parameters dialog box pane on which they appear.

3-14

Guide to ERT Target Options

Real-Time Workshop Pane

The Real-Time Workshop pane contains general code generation options
that pertain to

* System target file selection

e Target language selection

® Report generation

® Options and files to be used in the build process

® The use of custom storage classes

® Whether to generate code only or complete the entire build process

#, Configuration Parameters: untitled/Configuration {Active) ﬂ
Select: —Target zelection 1=
- Solver System target file: | ST Browse... |
- [1ata Import/E xport
- Optimization Language: C |
[~ Diagnostics Description: Fieal-Time “Workshop Embedded Coder [ho auto configuration)
- Sample Time
- Data Walidity —Documentation
- Type Conversion I~ Generate HTML repart
- Connectiviy .
. Compatibilty I~ Launch report autamatically
- Model Referencing I~ Include hyperinks ta model
- Hardware |mplementation
- Madel Referencing r—Build proc:
- Real-Time Warkshop TILE et I
- Comments M akefil fiqurati
- Symbols akefile configuration
- Custom Code ¥ Generate makefile
~Detug Make command: Imake_rtw
- nterface
- Code Style Template makefile: Iert_default_tmf
- Templates
- Data Placement Custom st |
- Data Type Replaceme [oo 01908 Cla
- bemary Sections [~ lgnore custom storage classes
[~ Generate code only Build | o
=

Ok I Lancel | Help | Lpply |

3-15

3 Code Generation Options and Optimizations

3-16

Target Selection Subpane

The Browse button in the Target Selection subpane lets you select a
target with the System Target File Browser. See the Real-Time Workshop
documentation for a general discussion of target selection.

To make it easier for you to generate code that is optimized for your target
hardware, Real-Time Workshop Embedded Coder provides three variants of
the ERT target. These are

¢ Optimized fixed-point ERT target: Select this target to generate code with
automatic configuration of options that are optimized for fixed-point code
generation.

¢ Optimized floating-point ERT target: Select this target to generate code
with automatic configuration of options that are optimized for floating-point
code generation.

¢ Default ERT target: Does not automatically configure any options. The
discussion throughout this chapter assumes use of the default ERT target.

These targets are based on a common system target file, ert.tlc. They are
displayed in the System Target File Browser as shown in the figure below.

=) system target file browser: untitled x|

System target file: Description:
Real-Time Wor op Enbedded Coder (no auto configuration)

ert. tlc Real-Time Workshop Emnbedded Coder (auto configures for optimized fim

ert. tlc Real-Time Workshop Emnbedded Coder (auto configures for optimized flo

ert. tlc Visual C-C++ Project Hakefile only for the Real-Time Workshop Embedd

ert_shrlib. tlc Real-Time Workshop Embedded Coder (host-based shared library target)

grt. tlc Generic Real-Tine Target

grt. tlc Visual C-C++ Project Hakefile only for the "grt" target

grt_malloc. tlc Generic Real-Timne Target with dynamic nemory allocation -

|4l »

Full narne: E:smatlabirtwhicherthert He

Template make file: ert_default_tmf
Make command: make_rtw

Ok I Cancel | Help | Apply |

The optimized ERT target variants are discussed in detail in “Generating
Efficient Code with Optimized ERT Targets” on page 6-26.

You can implement a custom auto-configuring target, using the same
mechanism used by the optimized ERT target variants. “Auto-Configuring

Guide to ERT Target Options

Models for Code Generation” on page 6-22 discusses the auto-configuration
mechanism and utilities used by the optimized ERT target variants.

You can use the ert_shrlib.tlc target to generate a host-based shared
library from your Simulink model. Selecting this target allows you to generate
a shared library version of your model code that is appropriate for your host
platform, either a Windows dynamic link library (.d11) file or a UNIX shared
object (.so) file. This feature can be used to package your source code securely
for easy distribution and shared use. For more information, see “Creating and
Using Host-Based Shared Libraries” on page 3-118.

Use the Language menu in the Target selection subpane to select the
target language for the code Real-Time Workshop generates. You can select C
or C++. Real-Time Workshop generates .c or .cpp files, depending on your
selection, and places the files in your build directory.

Note If you select C++, you might need to configure Real-Time Workshop
to use the appropriate compiler before you build a system. For details,
see “Choosing and Configuring a Compiler” in the Real-Time Workshop
documentation.

Documentation Subpane

Options in the Documentation subpane control generation of the extended
Real-Time Workshop Embedded Coder HTML code generation report.
Options are

¢ Generate HTML Report: When this option is selected, the code
generation process generates an HTML code generation report, as described
in “Generating an HTML Code Generation Report” on page 3-65. Selecting
this option enables the two related options immediately below it.

By default, Generate HTML Report is deselected.

¢ Include hyperlinks to model: When you select this option, the HTML
report includes hyperlinks from the code to the generating blocks in the
model. By deselecting this option, you can speed up code generation. For
very large models (containing over 1000 blocks) generation of hyperlinks
can be time consuming.

3-17

3 Code Generation Options and Optimizations

3-18

This option is enabled and selected when Generate HTML Report is
selected.

¢ Launch report automatically: When you select this option, the HTML
report is automatically displayed in a MATLAB Web browser window after
code generation. If you prefer not to have the browser come to the front
after code generation, deselect this option.

This option is enabled and selected when Generate HTML Report is
selected.

Build Process Subpane
The options in the Build process subpane are described in the Real-Time
Workshop documentation.

For examples of how arguments in the Make command and TLC options
fields are passed to the build process, see:

e “Customizing the Target Build Process with the STF_make_rtw Hook File”
on page 6-9

¢ The “Understanding and Using the Build Process” section of the Developing
Embedded Targets document

Custom Storage Class Subpane

If you have defined data objects with custom storage classes in your model for
use with Real-Time Workshop Embedded Coder, you should make sure that
the Ignore custom storage classes option is deselected.

Chapter 4, “Custom Storage Classes” contains a detailed description of the
use of custom storage classes in code generation.

Guide to ERT Target Options

Comments Pane

The Comments pane contains options related to generation of comments in
generated code.

#, Configuration Parameters: untitled/Configuration (Active)

Select:

- Solver

- D ata [mport/E sport
- [plimization

[=]- Diagrostics

- Sample Time

- D ata Yalidity

- Type Conversion

- Cannectivity

- Campatibility

- M odel Referencing
ardware Implementation
odel Referencing
eal-Time Workshop

- Symbols

- Cugtom Code

- Debug

- |nterface

- Code Style

- Templates

- Dlata Placement

- Data Type Replaceme
- b emaony S ections

—Overall contral

¥ Inchude comments

—Auta generated comments
[Simulink block comments
[~ Show eliminated blocks

[~ Yerbose comments for SimulinkGlobal storage class

—Custom comments
[~ Simulink block descriptions
[~ Simulink data object descriptions
[~ Custom comments [MPT objscts anly)

[~ Stateflow object descriptions

[~ Requiremerts in block comments

Ok I LCancel Help

b |x

Overall Control Subpane

The Include comments option in the Overall control subpane enables or
disables all other options on the Comments pane.

Auto Generated Comments Subpane
The Auto generated comments subpane contains options that are common
to all targets. See the Real-Time Workshop documentation for information on
the other options in the Auto generated comments subpane.

3-19

3 Code Generation Options and Optimizations

3-20

Custom Comments Subpane

The Custom comments subpane supports options that are specific to the
ERT target. These options let you enable or suppress generation of descriptive
information in comments for blocks and other objects in the model. These
options are

¢ Simulink block descriptions: You can enter descriptive information
for any block in the Description field of the Block Properties dialog box.
When you select Simulink block descriptions, the code generator:

= Includes the text specified in the Description field in the comments for
the code generated for each block

= Adds a comment that includes the block name at the start of the code for
each block, regardless of whether you select Simulink block comments

The block description text and block names generated as comments

can include international (non-US-ASCII) characters. (For details

on international character support, see “Support for International
(Non-US-ASCII) Characters” in the Real-Time Workshop documentation.)

Note For virtual blocks or blocks that have been removed due to block
reduction, no comments are generated.

¢ Simulink data object descriptions: You can enter descriptive
information for Simulink data objects (such as signal, parameter, data type,
and bus objects) with the Description field of the object properties in the
Simulink Model Explorer. When the Simulink data object descriptions
option is selected, the Description text is included in comments in code
generated for each object.

Guide to ERT Target Options

®* Custom comments (MPT objects only): You can include comments
just above signals and parameter identifiers in the generated code as
specified in an M-code or TLC function. See the Module Packaging Features
document for more information.

¢ Stateflow object descriptions: You can enter descriptive information
for any Stateflow state, chart, transition, or graphical function in the
Description field of the Properties dialog box for the Stateflow object.
When you select Stateflow object descriptions, the code generator
includes the Description text in comments that appear just above the
code generated for each object, including any international (non-US-ASCII)
characters. (For details on international character support, see “Support
for International (Non-US-ASCII) Characters” in the Real-Time Workshop
documentation.)

* Requirements in block comments: When you select Requirements
in block comments, the code generator includes the requirements that
you assigned to Simulink blocks in the generated code comments. For more
information, see “Including Requirements with Generated Code” in the
Simulink Verification and Validation documentation.

3-21

3 Code Generation Options and Optimizations

Symbols Pane

The Symbols pane contains options that control the generation of symbols
(such as variable names) in generated code. Most of these options are specific
to the ERT target. Some Symbols pane options are common to all targets;
these are described in the Real-Time Workshop documentation.

#, Configuration Parameters: untitled/Configuration (Active) x|
Select —&uto-generated identifier naming rul 1=
- Solver —|dentifier farmat control
- Data | t/E xport .
aa Tmpar S spor Global variables: |$F|$N$M
- [ptimization
[=1- Diagnostics Global types: |$N $R M
Sample Time Field name of global types: |NM
[rata W alidity
Tope Conversion Subsystem methods: |$RSHMEF
Connectivity Local temparary variables: |NM
Compativiity . Local block output wariables: Irtb_NM
Model Referencing
. Hardware Implementation Constant macros: |$F| FMEM
- Model Referencing
- Real-Time Waorkshop Iinimum mangle length: |1
Eomnts M awirum identifier length: |31
yrnbols o =
Custam Code Generate scalar inlined parameters as:l Literals LI
- Debug A - -
- rterface —Simulink data object naming il
- Code Shyle Signal naming: I MNone LI
- Templates P " X m _I o
N -
. Data Placement ‘arameter namlng.l one
- Data Type Replacem: | #define naming: I MNaone LI
- bemory Sections
=
ok I LCancel | Help | Apply |

Avuto-Generated Identifier Naming Rules Subpane

¢ Identifier format control: Provides parameter fields that let you
customize generated identifiers. You can enter macro strings that specify
whether, and in what order, certain substrings are included within
generated identifiers. The Identifier format control parameters affect
the generation of identifiers for

= Global variables

= Global types

= Field name of global types
= Subsystem methods

3-22

Guide to ERT Target Options

= Local temporary variables
= Local block output variables
= Constant macros

For details on how to specify formats, see “Specifying Identifier Formats”
on page 3-24. For limitations that apply, see “Identifier Format Control
Parameters Limitations” on page 3-30.

¢ Minimum mangle length: See “Name Mangling” on page 3-26.

* Maximum identifier length: Specifies the maximum number of
characters (default 31) in generated function, typedef, and variable names.
If you expect your model to generate lengthy identifiers (due to use of long
signal or parameter names, for example), or you find that identifiers are
being mangled more than expected, you should increase the Maximum
identifier length.

Note that the Maximum identifier length interacts with the Identifier
format control specifications, as described below.

* Generate scalar inlined parameters as: This option takes effect when
the Inline parameters option is selected. For scalar inlined parameters,
this menu lets you control how parameter values are expressed in the
generated code. You can specify one of the following:

= Literals: Parameters are expressed as numeric constants. This is the
default, and is backward compatible with prior versions of Real-Time
Workshop that did not support this option. Use of Literals can help
in debugging TLC code, as it makes the values of parameters easy to
search for.

= Macros: Parameters are expressed as variables (with #define macros).
The Macros option can make code more readable.

Simulink Data Object Naming Rules Subpane

¢ Signal naming: Use this option to define rules that change the names
of a model’s signals.

¢ Parameter naming: Use this option to define rules that change the names
of all of a model’s parameters.

3-23

3 Code Generation Options and Optimizations

3-24

¢ #define naming: Use this option to define rules that change the names of
a model’s parameters that have a storage class of Define.

For more information on these options, see “Specifying Simulink Data
Object Naming Rules” in the Real-Time Workshop Embedded Coder Module
Packaging Features document.

Specifying Identifier Formats

The Identifier format control parameters let you customize generated
identifiers by entering a macro string that specifies whether, and in what
order, certain substrings are included within generated identifiers. For
example, you can specify that the root model name be inserted into each
identifier.

The macro string can include

® Tokens of the form $X, where X is a single character. Valid tokens are listed
in Identifier Format Tokens on page 3-24. You can use or omit tokens as
you want, with the exception of the $M token, which is required (see “Name
Mangling” on page 3-26) and subject to the use and ordering restrictions
noted in Identifier Format Control Parameter Values on page 3-26.

® Any valid C or C++ language identifier characters (a-z, A-Z, _, 0-9).

The build process generates each identifier by expanding tokens (in the
order listed in Identifier Format Tokens on page 3-24) and inserting the
resultant strings into the identifier. Character strings between tokens are
simply inserted directly into the identifier. Contiguous token expansions are
separated by the underscore (_) character.

Identifier Format Tokens

Token Description

$M Insert name mangling string if required to avoid naming
collisions (see “Name Mangling” on page 3-26). Note: This
token is required.

$F Insert method name (for example, Update for update
method). This token is available only for subsystem
methods.

Guide to ERT Target Options

Identifier Format Tokens (Continued)

Token

Description

$N

Insert name of object (block, signal or signal object, state,
parameter or parameter object) for which identifier is
being generated.

$R

Insert root model name into identifier, replacing any
unsupported characters with the underscore (_) character.
Note that when using model referencing, this token

is required in addition to $M (see “Model Referencing
Considerations” on page 3-29).

Note: This token replaces the Prefix model name to
global identifiers option used in previous releases.

$H

Insert tag indicating system hierarchy level. For root-level
blocks, the tag is the string root . For blocks at the
subsystem level, the tag is of the form sN_, where N is a
unique system number assigned by Simulink. This token
is available only for subsystem methods and field names of
global types.

Note: This token replaces the Include System
Hierarchy Number in Identifiers option used in
previous releases.

$A

Insert data type acronym (for example, i32 for long
integers) to signal and work vector identifiers. This token
is available only for local block output variables and field
names of global types.

Note: This token replaces the Include data type
acronym in identifier option used in previous releases.

Identifier Format Control Parameter Values on page 3-26 lists the default
macro string, the supported tokens, and the applicable restrictions for each
Identifier format control parameter.

3-25

3 Code Generation Options and Optimizations

Identifier Format Control Parameter Values

Default | Supported
Parameter Value Tokens Restrictions
Global SRENSM $R, $N, $M $F, $H, and $A are disallowed.
variables
Global types SNSRSM $N, $R, $M $F, $H, and $A are disallowed.
Field name of SNSM $N, $M, $H, | $R and $F are disallowed.
global types $A
Subsystem SRENSMSF | $R, $N, $M, | $F and $H are empty for
methods $F, $H Stateflow functions; $A is

disallowed.

Local SNSM $N, $M, $R $F, $H, and $A are disallowed.
temporary
variables
Local block rtb_NM | $N, $M, $A $R, $F, and $H are disallowed.
output
variables
Constant SRENSM $R, $N, $M $F, $H, and $A are disallowed.
macros

Non-ERT based targets (such as the GRT target) implicitly use a default
$RENSM specification. This specifies identifiers consisting of the root model
name, followed by the name of the generating object (signal, parameter,
state, and so on), followed by a name mangling string (see “Name Mangling”
on page 3-26).

For limitations that apply to Identifier format control parameters, see
“Identifier Format Control Parameters Limitations” on page 3-30.

Name Mangling

In identifier generation, a circumstance that would cause generation of two or
more identical identifiers is called a name collision. Name collisions are never
permissible. When a potential name collision exists, unique name mangling
strings are generated and inserted into each of the potentially conflicting

3-26

Guide to ERT Target Options

identifiers. Each name mangling string is guaranteed to be unique for each
generated identifier.

The position of the $M token in the Identifier format control parameter
specification determines the position of the name mangling string in the

generated identifiers. For example, if the specification $RSNSM is used, the
name mangling string is appended (if required) to the end of the identifier.

The Minimum mangle length parameter specifies the minimum number
of characters used when a name mangling string is generated. The default
is 1 character. As described below, the actual length of the generated string
may be longer than this minimum.

Traceability

An important aspect of model based design is the ability to generate identifiers
that can easily be traced back to the corresponding entities within the model.
To ensure traceability, it is important to make sure that incremental revisions
to a model have minimal impact on the identifier names that appear in
generated code. There are two ways of achieving this in Real-Time Workshop
Embedded Coder:

1 Choose unique names for objects in Simulink (blocks, signals, states, and
so on) as much as possible.

2 Make use of name mangling when conflicts cannot be avoided.

When conflicts cannot be avoided (as may be the case in models that use
libraries or model reference), name mangling ensures traceability. The
position of the name mangling string is specified by the placement of the $M
token in the Identifier format control parameter specification. Mangle
characters consist of lower case characters (a-z) and numerics (0-9), which
are chosen with a checksum that is unique to each object. How Name
Mangling Strings Are Computed on page 3-28 describes how this checksum is
computed for different types of objects.

3-27

3 Code Generation Options and Optimizations

3-28

How Name Mangling Strings Are Computed

Object Type Source of Mangling String

Block diagram Name of block diagram

Simulink block Full path name of block

Simulink Full name of parameter owner (that is, model or block)

parameter and parameter name

Simulink signal Signal name, full name of source block, and port
number

Stateflow objects | Complete path to Stateflow block and Stateflow
computed name (unique within chart)

The length of the name mangling string is specified by the Minimum mangle
length parameter. The default value is 1, but this automatically increases
during code generation as a function of the number of collisions.

To minimize disturbance to the generated code during development, specify
a larger Minimum mangle length. A Minimum mangle length of 4 is a
conservative and safe value. A value of 4 allows for over 1.5 million collisions
for a particular identifier before the mangle length is increased.

Minimizing Name Mangling

Note that the length of generated identifiers is limited by the Maximum
identifier length parameter. When a name collision exists, the $M token is
always expanded to the minimum number of characters required to avoid the
collision. Other tokens and character strings are expanded in the order listed
in Identifier Format Tokens on page 3-24. If the Maximum identifier length
is not large enough to accommodate full expansions of the other tokens,
partial expansions are used. To avoid this outcome, it is good practice to

¢ Avoid name collisions in general. One way to do this is to avoid using
default block names (for example, Gain1, Gain2...) when there are many
blocks of the same type in the model.

® Where possible, increase the Maximum identifier length to accommodate
the length of the identifiers you expect to generate.

Guide to ERT Target Options

Set the Minimum mangle length parameter to reserve at least three
characters for the name mangling string. The length of the name mangling
string increases as the number of name collisions increases.

Note that an existing name mangling string increases or decreases in
length if changes to model create more (or fewer) collisions. If the length of
the name mangling string increases, additional characters are appended
to the existing string. For example, 'xyz' might change to 'xyzQ'. In the
inverse case (fewer collisions) 'xyz' would change to 'xy'.

Model Referencing Considerations

Within a model that uses model referencing, there can be no collisions
between the names of the constituent models. When generating code from a
model that uses model referencing:

¢ The $R token must be included in the Identifier format control
parameter specifications (in addition to the $M token).

¢ The Maximum identifier length must be large enough to accommodate
full expansions of the $R and $M tokens. A code generation error occurs if
Maximum identifier length is not large enough.

When a name conflict occurs between an identifier within the scope of a
higher-level model and an identifier within the scope of a referenced model,
the identifier from the referenced model is preserved. Name mangling is
performed on the identifier from the higher-level model.

Exceptions to Identifier Formatting Conventions

There are some exceptions to the identifier formatting conventions described
above:

® Type name generation: The above name mangling conventions do not
apply to type names (that is, typedef statements) generated for global
data types. If the $R token is included in the Identifier format control
parameter specification, the model name is included in the typedef. The
Maximum identifier length parameter is not respected when generating
type definitions.

® Non-Auto storage classes: The Identifier format control parameter
specification does not affect objects (such as signals and parameters)

3-29

3 Code Generation Options and Optimizations

that have a storage class other than Auto (such as ImportedExtern or
ExportedGlobal).

Identifier Format Control Parameters Limitations
The following limitations apply to the Identifier format control parameters:

¢ The following auto-generated identifiers currently do not fully comply
with the setting of the Maximum identifier length parameter on the
Real-Time Workshop/Symbols pane of the Configuration Parameters
dialog box.

= Model methods

» The applicable format string is RF, and the longest $F is
_derivatives, which is 12 characters long. The model name can
be up to 19 characters without exceeding the default Maximum
identifier length of 31.

Local functions generated by S-functions or by add-on products such as
Signal Processing Blockset that rely on S-functions

Local variables generated by S-functions or by add-on products such as
Signal Processing Blockset that rely on S-functions

DWork identifiers generated by S-functions in referenced models
Fixed-point shared utility macros or shared utility functions
Simulink rtm macros

e Most are within the default Maximum identifier
length of 31, but some exceed the limit. Examples
are RTMSpecAccsGetStopRequestedValStoredAsPtr,
RTMSpecAccsGetErrorStatusPointer, and
RTMSpecAccsGetErrorStatusPointerPointer.

Define protection guard macros

» Header file guards, such as _RTW_HEADER_$(filename) h_, which
can exceed the default Maximum identifier length of 31 given a
filename such as $R_private.h.

» Include file guards, such as _$R_COMMON_INCLUDES_.
o Typedef guards, such as _CSCI_$R_CHARTSTRUCT_.

3-30

Guide to ERT Target Options

¢ In some situations, the following identifiers potentially can conflict with
others.

= Model methods

= Local functions generated by S-functions or by add-on products such as
Signal Processing Blockset that rely on S-functions

= Local variables generated by S-functions or by add-on products such as
Signal Processing Blockset that rely on S-functions

= Fixed-point shared utility macros or shared utility functions
= Include header guard macros

® The following external identifiers that are unknown to Simulink may
potentially conflict with auto-generated identifiers.

= Identifiers defined in custom code

= Identifiers defined in custom header files

= Identifiers introduced through a non-ANSI-C standard library
= Identifiers defined by custom TLC code

¢ Identifiers generated for simulation targets may exceed the Maximum
identifier length. Simulation targets include the model reference
simulation target, the Simulink Accelerator target, the RSim target, and
the S-function target.

3-31

3 Code Generation Options and Optimizations

3-32

Interface Pane
The Interface pane provides options software environment, code interface,

validation, and data exchange options.

Configuration Parameters: untitled /Configuration (Active)

Select:

- Sobver

- [ata Import/E xport

- O ptimization

[=]- Diagnostics

- Sample Time

- Data ' alidity

- Type Corwersion

- Cannectivity

- Campatibility

- bodel Referencing
-Hardware [mplementation

- M odel Referencing
-Real-Time warkshop

- Comments

- Symbols

- Custom Code

- Templates

- Data Placement

- Data Type Replace...
- bemary Sections

x|
 Software enviranment =
T arget floating-point math environment; ICBSHCSU [&MSI) ;I
Lltility function generation IAuto ;I
Support: W floating-point numbers ¥ norfinite numbers ¥ complex numbers
¥ abzalute time ™ continuous time ™ nonnlined 5-functions
— Code interface
[T GRT compatible call interface W Single output/update function W Terminate function required
™ Generate reuzable code
™ Suppress emor status in realtime model data stucture
Configure Functions ...
— Werification
Support software-in-the-loop [SIL] testing
’7|_ Create Simulink [S-Function] block I Enable portable word sizes
I~ MAT-file logging
— Data exchange
Interface: INone ﬂ
=
QK I Cancel Help | Apply |

Software Environment Subpane

The Software Environment subpane contains options that affect the overall
operation of the generated program:

¢ Target floating-point math environment: This menu provides three

options:

= (89/C90(ANSI): (default) Select this option to generate calls to the
ISO/TEC 9899:1990 C standard math library for floating-point functions.

= (99(IS0): Select this option to generate calls to the ISO/IEC 9899:1999
C standard math library.

Guide to ERT Target Options

= GNU99(GNU): Select this option to generate calls to the GNU gcc math
library, which provides extensions for C99 as defined by the compiler
option -std=gnu99.

If your target compiler supports the ISO C (ISO/IEC 9899:1999) math
library, you should select the C99 (IS0) option and set your compiler’s ISO
C option. This generates calls to the ISO C functions wherever possible
(for example, sqrtf () instead of sqrt() for single precision data) which
ensures that you obtain the best performance your target compiler offers.
However, if you select C99(I1S0) and your compiler does not support the
ISO C math extensions, compile-time errors likely will occur.

Restriction: Stateflow supports only C89/C90(ANSI). Selecting a different
option has no effect on code generated for Stateflow components.

Utility function generation: See “Utility Function Generation” in the
Real-Time Workshop documentation for information on this option.

Support floating-point / non-finite / complex numbers: These options
let you enable or suppress the generation of floating-point, complex, or
nonfinite numbers. By default, all three options are selected.

To generate pure integer code, deselect the Support floating-point
numbers option. If your model requires generation of floating-point data
or operations, select the Support floating-point numbers option. When
Support floating-point numbers is deselected, an error is raised if any
noninteger data or expressions are encountered during code generation.
The error message reports the offending blocks and parameters.

The Support floating-point numbers option replaces, and inverts the
logic of, the Integer code only option that was supported in previous
releases. Note that for compatibility, models that were configured for
Integer code only prior to Release 14 are configured automatically with
Support floating-point numbers deselected, and therefore continue to
generate pure integer code.

The Support non-finite numbers option is enabled only when Support
floating-point numbers is selected. This option lets you enable or
suppress generation of non-finite values (for example, NaN, Inf).

The Support complex numbers option is independent of the other two
options. This option lets you enable or suppress generation of complex
numbers.

3-33

3 Code Generation Options and Optimizations

3-34

* Support absolute time: Certain blocks require the value of either

absolute time (that is, the time from the start of program execution to the
present time) or elapsed time (for example, the time elapsed between
two trigger events). These related options determine how the ERT target
provides absolute or elapsed time values to blocks in the model.

By default, Support absolute time is selected. In this case, the ERT
target generates and maintains integer counters if a block in the model
requires absolute or elapsed time values. The target does not generate the
counters if model blocks do not use time values. When Support absolute
time is deselected, an error is raised at code generation time if any blocks
requiring absolute or elapsed time values are present in the model.

For further information on the allocation and operation of absolute and
elapsed timers, see the “Timing Services” chapter of the Real-Time
Workshop documentation.

Support continuous time: If this option is selected, the ERT target
supports code generation for continuous-time blocks. By default, this
option is deselected, and the build process generates an error if any
continuous-time blocks are present in the model.

Note that continuous time is not supported when generating an ERT
S-function wrapper (see “Automatic S-Function Wrapper Generation” on
page 3-69).

Support non-inlined S-functions: If this option is selected, the ERT
target supports code generation for non-inlined S-functions. By default,
this option is deselected, and the build process generates an error if any
C-MEX S-function that does not have a corresponding TLC implementation
(for inlining code generation) is present in the model.

Generation of non-inlined S-functions requires support for both
floating-point and non-finite numbers. When the Support non-inlined
S-functions option is selected, the Support floating-point numbers
and Support non-finite numbers options are automatically selected.

Note that inlining S-functions is highly advantageous in production code
generation, for example in implementing device drivers. You may want
to deselect Support non-inlined S-functions to enforce use of inlined
S-functions for code generation.

Guide to ERT Target Options

Code Interface Subpane

The Code interface subpane contains options that control whether or not
certain model functions are generated and how arguments are passed to
functions:

¢ GRT compatible call interface: When this option is selected, Real-Time
Workshop Embedded Coder generates model function calls that are
compatible with the main program module of the GRT target (grt_main.c
or .cpp). These calls act as wrappers that interface to ERT (Embedded-C
format) generated code.

This option provides a quick way to use ERT target features with a
GRT-based custom target that has a main program module based on
grt_main.c or .cpp.

Note When GRT compatible call interface is selected, MAT-file
logging must also be selected, and Suppress error status in real-time
model data structure must be deselected.

¢ Single output/update function: By default, this option is selected, and
the output and update functions are combined in a single model step
function. This reduces overhead and allows Real-Time Workshop Embedded
Coder to use more local variables in the step function of the model.

¢ Terminate function required: By default, this option is selected, and
a model_terminate function is generated (for more information, see the
description of model terminate). Deselect this option if your application is
designed to run indefinitely and does not require a terminate function.

¢ Generate reusable code: The Generate reusable code option and its
related options let you generate reusable, reentrant code from a model
or subsystem. When Generate reusable code option is deselected (the
default), model data structures are statically allocated and accessed
directly in the model code. Therefore the model code is neither reusable
nor reentrant.

“Model Entry Points” on page 2-24 documents the calling interface
generated for the model functions in the default case.

3-35

3 Code Generation Options and Optimizations

3-36

When Generate reusable code is selected, the Code interface subpane
displays and enables the additional options:

= Reusable code error diagnostic
= Pass root-level I/O as

The figure below shows these options at their default values.

r— Code interface

[~ GRT compatible call interface V¥ Single output/update function V' Terminate function required
[v Generate reusable code Feuzable cods ermor diagnostic: IEHD[ﬂ
Pazz rootlevel /0 as: IIndividuaI arguments LI

[~ Suppress emor status in reaktime model data structure

Configure Functions ... |

When Generate reusable code is selected, data structures such as block
states, parameters, external outputs, and so on, are passed in (by reference)
as arguments to model step and other generated model functions. These
data structures are also exported with model.h.

The Pass root-level I/O as: menu provides options that control how
model inputs and outputs at the root level of the model are passed in to the
model step function. The options are

= Individual arguments: This option is the default. Each root-level
model input and output is passed to model step as a separate argument.

= Structure reference: When this option is selected, all root-level inputs
are packed into a struct that is passed to model step as an argument.
Likewise, all root-level outputs are packed into a struct that is also
passed to model step as an argument.

In some cases, selecting Generate reusable code may generate code
that compiles but is not reentrant. For example, if any signal, DWork
structure, or parameter data has a storage class other than Auto, global
data structures are generated. To handle such cases, the Reusable code
error diagnostic menu is enabled when Generate reusable code is
selected. This menu offers a choice of three severity levels for diagnostics to
be displayed in such cases:

= None: Build proceeds without displaying a diagnostic message.

= Warning: Build proceeds after displaying a warning message.

Guide to ERT Target Options

= Error: Build aborts after displaying an error message.

In some cases, Real-Time Workshop Embedded Coder is unable to generate
valid and compilable code. For example, if the model contains any of the
following, the code generated would be invalid.

= An S-function that is not code-reuse compliant
= A subsystem triggered by a wide function call trigger
In these cases, the build terminates after reporting the problem.

Suppress error status in real-time model data structure: If you do
not need to log or monitor error status in your application, select this option.

By default, the real-time model data structure (rtModel) includes an error
status field. This field lets you log and monitor error messages with macros
provided for this purpose (see “rtModel Accessor Macros” on page 2-4). If
Suppress error status in real-time model data structure is selected,
the error status field is not included in rtModel. Selecting this option may
also cause the real-time model data structure to disappear completely from
the generated code.

When generating code for multiple models that are integrated together,
make sure that the Suppress error status in real-time model data
structure option is set the same for all of the models. Otherwise, the
integrated application may exhibit unexpected behavior. For example, if
the option is selected in one model but not in another, the error status may
or may not be registered by the integrated application.

Do not select Suppress error status in real-time model data structure
if the MAT-file logging option is also selected. The two options are
incompatible.

Configure Functions: The Configure Functions button allows you

to control the model step function prototype that is generated during
code generation for ERT-based Simulink models. Clicking Configure
Functions launches a Model Step Functions dialog box (see “Model

Step Functions Dialog Box” on page 3-102). Based on the Function
specification value you select for your model step function (supported
values include Default model-step function and Model specific C
prototype), you can preview and modify the function prototype. Once you
validate and apply your changes, you can generate code based on your
function prototype modifications. For more information about using the

3-37

3 Code Generation Options and Optimizations

3-38

Configure Functions button and the Model Step Functions dialog box,
see “Controlling model_step Function Prototypes” on page 3-101.

Verification Subpane

The Verification subpane contains options that are useful for verifying
generated code in Simulink.

¢ Create Simulink (S-Function) block: Selecting this option lets you
generate an S-function wrapper that calls your C or C++ code from within
Simulink. S-function wrappers provide a standard interface between
Simulink and externally written code, allowing you to integrate your
code into a model with minimal modification. See “Automatic S-Function
Wrapper Generation” on page 3-69 for information on this feature.

¢ Enable portable word sizes: This option allows compilation of generated
code on a processor with different word sizes than the target processor on
which the production code is intended to run. For more information, see
“Validating ERT Production Code on the MATLAB Host Computer Using
Portable Word Sizes” on page 3-75.

e MAT-file logging: This option enables or suppresses MAT-file logging. By
default, MAT-file logging is deselected. This default is appropriate for
embedded applications, which typically do not support a file system. Also,
suppression of MAT-file logging eliminates the extra code and memory
usage required to initialize, update, and clean up logging variables. In
addition to these efficiencies, clearing the MAT-file logging option has
the following effects:

Under certain conditions, code and storage associated with root output
ports are eliminated, achieving further efficiency. See “Using Virtualized
Output Ports Optimization” on page 3-60 for information.

= The model_ step function does not check the current time against the
stop time. Therefore the generated program runs indefinitely, regardless
of the setting of the model’s stop time. The ert_main program displays a
message notifying you that the program runs indefinitely.

MAT-file logging requires support for both floating-point and non-finite
numbers. When the MAT-file logging option is selected, the Support
floating-point numbers and Support non-finite numbers options
are automatically selected.

Guide to ERT Target Options

e MAT-file variable name modifier: This menu is displayed when
MAT-file logging is selected. The menu selects a string to be added to the
variable names used when logging data to MAT-files.

Data Exchange Subpane

The Data Exchange subpane contains options related to interfacing model
data to systems external to the generated code. These options are selected
with the Interface menu. Depending on the choice selected from the
Interface menu, different suboptions are displayed dynamically below the
Interface menu. The Interface menu offers the following choices:

® C-API: Generate C API code that allows externally written code to access
block outputs (signals) and/or parameters. For documentation of the C API
for signals and parameters, see the Real-Time Workshop documentation.

® External mode: Generate external mode support code. If you want to
deploy external mode code on an embedded target, see “Using External
Mode with the ERT Target” on page 3-63 for special considerations.

® ASAP2: Export an ASAP2 file containing information about the model
during the code generation process. See the “Generating an ASAP2 File”
section of the Real-Time Workshop documentation for detailed information.

® None: (default) No data exchange code is generated.

3-39

3 Code Generation Options and Optimizations

3-40

Code Style Pane

The Code Style pane allows you to control specific optimizations in generated

code.

#, Configuration Parameters: untitled/Configuration (Active)

Select:

Tz T

- Sobver

- Data Import/Esport

- O ptirmization

[=)- Diaghostics

- Sample Time

- D ata Y alidity

- Type Corwersion
- Cannectivity

- Campatibility

- bodel Referencing
ardware |mplementation
odel Referencing
eal- Time *Workshop
- Comments

- Symbolz

- Custom Code

- Diebug

- |nterface

- Code Style

- Templates

- [ata Placement

- Data Type Replace...
- bemary Sections

— Code Style

Parentheses level: INominaI [0 ptimized for readability]
™ Preserve operand order in expression

™ Preserve condition expression in if statement

o |

b |x

[

Apply |

Controlling Parenthesization

C code contains some syntactically required parentheses, and can contain
additional parentheses that change semantics by overriding default operator

precedence. C code can also contain optional parentheses that have no

functional significance, but serve only to increase the readability of the code.

Optional C parentheses vary between two stylistic extremes:

¢ Include the minimum parentheses required by C syntax and any

precedence overrides, so that C precedence rules specify all semantics
unless overridden by parentheses.

Guide to ERT Target Options

¢ Include the maximum parentheses that can exist without duplication, so
that C precedence rules become irrelevant: parentheses alone completely
specify all semantics.

Understanding code with minimum parentheses can require correctly
applying nonobvious precedence rules, but maximum parentheses can
hinder code reading by belaboring obvious precedence rules. Various
parenthesization standards exist that specify one or the other extreme, or
define an intermediate style that can be useful to human code readers.

Parenthesization Control Techniques. Use the Code Style pane
Parenthesis level pulldown menu to select the desired parenthesization
style. Three choices are available:

® Minimum — Parentheses appear only where required by ANSI C or
needed to override default precedence. For example:

isZero = var == 0;

if (isZero == 1 && (value < 3.7 ||value > 9.27)) {
/* code */
}

¢ Nominal (the default) — An intermediate setting that compromises
between readability and visual complexity. The result is similar to the code
that Real-Time Workshop Embedded Coder generated in previous releases.
The exact definition can change between releases.

® Maximum — Parentheses appear everywhere needed to specify meaning
without relying on operator precedence. Code generated with this setting
conforms to MISRA requirements. For example:

isZero = (var == 0);

if ((isZero == 1) && ((value < 3.7) || (value > 9.27))) {
/* code */
}

You can also control parenthesization by executing a MATLAB command:

set_param(bdroot, 'ParentheseslLevel', 'style')

where 'style' is one of 'minimum', 'nominal', or 'maximum'.

3-41

3 Code Generation Options and Optimizations

3-42

Controlling Left-Recursive Expression

You can write commutable operands as a right- or left-recursive expression.
By default, Real-Time Workshop might reorder commutable operands to
make an expression left-recursive. A left-recursive expression results in more
efficient code for nonoptimized compilers. For example:

(B+C) *A

If you want to preserve the original expression order to increase the
readability of the code or for code traceability purposes, select the Preserve
operand order in expression option on the Code Style pane. This option
preserves the expression order you specify in the model. For example:

A* (B+C)

Negating if Statements

You can write an if statement that has an empty primary statement branch.
For example:

if expressioni
else
statements2;
end

If the first statement branch of an if statement is empty, by default Real-Time
Workshop negates the expression. For example:

if ~expressioni
statements2;
end

To preserve the original expression to increase the readability of the code or
for code traceability purposes, select the Preserve condition expression

in if statement option on the Code Style pane. This option preserves the

expression you specify in the model.

Guide to ERT Target Options

Templates Pane

The Templates pane contains advanced options that enable you to customize
generated code.

#, Configuration Parameters: untitled, Configuration (Active) x|
Select — Code templates =
- Solver Source file [7.c] template: Iert_code_template.cgt Browse... Edit...
- D ata [mport/E sport
- 0 plimization Header file [* h) template: Iert_code_template.cgt Browse... Edit...
[=]- Diagrostics
- Sample Time —[ata templates
- Data Walidity . :
- Type Conversion Source file [*.c) template: Iert_code_template.cgt Browse... Edit...
Connec.tl\.t?ty Header fils [* h] template: Iert_code_template.cgt Browse... Edit...
- Campatibility
- hfodel Heferencmg s rm——
- Hardware Implementation
- b odel Referencing File customization template: Ie:-cample_file_process. the Browse... | Edit... |
B-Real Time 'w/orkshop [V Generate an example main program
- Comments e i
- Symbols T arget operating eystern: I B areB oardE xample j

- Custom Code
- Debug
- |nterface

- Data Placement
- Data Type Replaceme
- b emaony S ections

ak LCancel Help | Apply |

Code Templates and Data Templates Subpanes

Code and data templates provide extensive code customization features, which
are described in the Module Packaging Features document. Brief descriptions
of the options for specifying such templates follow:

¢ Source file (*.c) template: Select a code generation template (CGT) file
to use when generating source (.c or .cpp) files. A CGT file defines the
top-level organization and formatting of generated code. This file must
be located on the MATLAB path.

* Header file (*.h) template: Select a CGT file to use when generating
header (.h) files. This file must be located on the MATLAB path. This can
be the same template specified in the Source file (.c) template field, in
which case identical banners are generated in source and header files.

3-43

3 Code Generation Options and Optimizations

3-44

By default, the template for both source and header files is
matlabroot/toolbox/rtw/targets/ecoder/ert_code_template.cgt.

See also “Generating Custom File Banners” on page 6-55 for a simple example
of how a code template can be applied to generate customized comment
sections in generated code files.

Custom Templates Subpane

¢ File customization template: This option lets you specify a custom file
processing template (CFP) template file. CFP templates let you customize
generated code by organizing generated code into sections (such as includes,
typedefs, functions, and more). A CFP template can emit code, directives,
or comments into each section as required. See “Custom File Processing”
on page 6-34 for detailed information.

¢ Generate an example main program: This option and the related
Target operating system menu let you generate a model-specific example
main program module. See “Generating the Main Program Module” on
page 2-9.

Guide to ERT Target Options

Data Placement Pane

The Data Placement pane contains advanced options for Module Packaging

Features. For details on using these options, see the Module Packaging
Features document.

#, Configuration Parameters: untitled/Configuration {Active) x|

Select: —[Global data placement [custom storage classes anly) =

-~ Salver Diata definition: I Auto
- [ata [mport/E xport
- [ptimization

El- Diagnostics Hinclude file dellmlter:l Auto
- Sample Time
- [ata Y alidity —Global data placement [MPT data objects anly]
- Type Conversion . —

Module naming: Mot specified hd

- Cannectivity Y I P —I
- Campatibility Signal display level: |1 1] Parameter tune level: (10

D ata declaration: I Auta

Ll Lefle]

- Model Referencing

-~ Hardware Implementation
odel Referencing
eal-Time Workshop

- Comments

- S mbols

- Cugtom Code

- Diebug

- nterface

- Code Style

- Templates el

D=z T

- hemory Sections

=
oK I Lancel | Help | Lpply |

® Data definition: Use this option to specify whether data is to be defined

in the generated source file or in a single separate header file.

¢ Data declaration: Use this option to specify whether data is to be
declared in the generated source file or in a single separate header file.

¢ #include file delimiter: Use this option to specify the #include
file delimiter to be used in generated files that contain the #include
preprocessor directive for MPF data objects.

® Module naming: This option lets you name the generated module using

the same name as the model or a user-specified name.

® Signal display level: Use this option to control whether signal data
objects are to be declared as global data in the generated code.

¢ Parameter tune level: This option lets you declare a parameter data
object as tunable global data in the generated code.

3-45

3 Code Generation Options and Optimizations

Data Type Replacement Pane

The Data Type Replacement pane provides an interface for replacing
built-in data type names with user-defined replacement data type names in
the generated code for your model.

Select Replace data type names in the generated code to display the
Data type names table:

#, Configuration Parameters: untitled;Configuration (Active)

Select: [w Replace data type names in the generated code
- Salver —Data bype nam
- [Data [mport/E =port
----Dptlmlzat.mn Simulink Real-Time Workshop Replacement
& Diagnastics MName Mame Mame
- S ample Tirme
- Data Y alidit
ta et . double real T
- Type Convergion
- Connectivity zingle 1eald2_ T
- Campatibilty @2 nEeT

- b odel Referencing 5 5
int1E W16 T

ata Placement

- Hardware Implementation I
- bodel Referencing intg intg T I
[=]- Real-Time Workshop Linta2 Wint2_T I
- Comments
- Symbols uintl uint1E_T |
- Custom Code uintd intg_T |
-~ Debug boolean boolean T I
- Interface
- Code Style int int_T I
- Templates Lint uint_T I

char char_T

- Memaory Sections

ak. LCancel | Help | Apply

The table Data type names lists each Simulink built-in data type name
along with its Real-Time Workshop data type name. Selectively fill in fields in
the third column with your replacement data types. Each replacement data
type should be the name of a Simulink.AliasType object that exists in the
base workspace. Replacements may be specified or not for each individual
built-in type.

For each replacement data type entered, the BaseType property of the

associated Simulink.AliasType object must be consistent with the built-in
data type it replaces. For double, single, int32, int16, int8, uint32,

3-46

Guide to ERT Target Options

uint16, uint8, and boolean, the replacement data type’s BaseType must
match the built-in data type. For int, uint, and char, the replacement data
type’s size must match the size displayed for int or char on the Hardware
Implementation pane of the Configuration Parameters dialog box. An error
occurs if a replacement data type specification is inconsistent. For more
information, see “Replacing Built-In Data Type Names in Generated Code” in
the Module Packaging Features document.

3-47

3 Code Generation Options and Optimizations

3-48

Memory Sections Pane

The Memory Sections pane provides an interface for inserting comments
and pragmas into the generated code for

® Data defined in custom storage classes

® Internal data not defined in custom storage classes

¢ Model-level functions

® Atomic subsystem functions with or without separate data

For details on using memory sections, see Chapter 5, “Memory Sections”.

#4, Configuration Parameters: untitled/Configuration {Active)
Select: —Package containing memary sections for model data and function
- Salver Package:l - Mang - LI Refresh package Iistl
- [Data [mport/E =port
D.ptlmlzat.lon —bkemaony sections for model functions and subsystem default
[~ Diaghostics
- Sample Time InitializeT erminate:l Drefault ;I
- DataValidity E xecution: I Default |
- Type Corveersion
- Connectivity —Memory sections for model data and subsystem defaults
- Compatibility
- Model Referencing Cornstants: I Default LI
- Hardware Implementation Inputs.-"Dutputs:l Default j
- hodel Referencing | d Defod J
. : -
[=-Real-Time " orkshop e dEE I efault
- Comments Parameters: I Drefault j
- Symbols
- Cugtom Code —Walidation result
- Deb -
=hug Package and memary sections found.
- Interface
- Code Style
- Templates
- [ata Placement
- Data Type Replaceme
| | >
QK I LCancel Help | Apply

b |x

=
|

Guide to ERT Target Options

* Package: Use this field to specify the package that contains the memory
sections that you want to apply. To refresh the list of available packages in
your configuration, click Refresh package list.

¢ Initialize/Terminate: Use this field to apply memory sections to:

= Initialize/Start functions

= Terminate functions

¢ Execution: Use this field to apply memory sections to:

= Step functions

= Run-time initialization functions

= Derivative functions
= Enable functions

= Disable functions

® Constants: Use this field to apply memory sections to:

Data Definition

Data Purpose

model cP Constant parameters
model cB Constant block I/0
model Z Zero representation

¢ Inputs/Outputs: Use this field to apply memory sections to:

Data Definition

Data Purpose

model U

Root inputs

model_Y

Root outputs

3-49

3 Code Generation Options and Optimizations

¢ Internal data: Use this field to apply memory sections to:

Data Definition Data Purpose
model B Block I/0

model D D-work vectors

model M Run-time model
model_Zero Zero-crossings

e Parameters: Use this field to apply memory sections to:

Data Definition Data Purpose

model P Parameters

e Validation results: Displays the results of memory section validation,
which checks that the currently chosen package is on the MATLAB path
and that the selected memory sections exist inside the package.

3-50

Guide to ERT Target Options

Optimization Pane

Most of the options in the Optimization pane are common to all targets,
including all options listed in the Simulation and code generation and
Signals subpanes. These are described in “Optimization Options” in the
Real-Time Workshop documentation.

When you select the ERT target (or a target derived from the ERT target),
additional options are displayed. These options are described below.

#4, Configuration Parameters: untitled/Configuration {Active) 5[
Select: — Simulation and code generation
- Salver v Block reduction ¥ Conditional input branch execution
e at Imprta"E:-:port v Implement logic sighals as boolean data [vs. double). |v Signal storage reuse
i "
(- Diagrostics ™ Irline parameters Cotfigure ... |
- Sample Time L
. Data Validity Application lifespan [da_l,ls]l‘l
- Type Corveersion -
- Carinectivity —LCode generation
- Compatibility - -
. Parameter structure: | MonHierarchical -
- M odel Referencing I _I
- Hardware Implementation —Signal
- Model Fleferencmg [V Enable lozal block outputs ¥ Reuse block outputs
[=-Real-Time " orkshop

- Comments [~ lgnare integer downcasts in folded expressions [T [nling irevariant signals

- Symbols [V Eliminate superfluous temporary variables [Expression folding]

-~ Custor Cade Loop unraling threshold: |5

- Diebug

- Interface —

- Code Style —Data initialization

- Templates I Remove root level 120 zero initialization I~ Use memset to initialize foats and doubles ta 0.0

- [ata Placement
- Data Type Replaceme
- Memaory Sections

I~ Remove internal state zern initialization [¥ Optimize initialization code for model reference

—Integer and fixed-paint

I~ Remove code fraom foating-point to integer conversions that wraps out-of-range values

I~ Remove code that protects against division anthmetic exceptions

< | 2]

ok I LCancel Help Apply

3-51

3 Code Generation Options and Optimizations

3-52

Code Generation Subpane

The Parameter structure menu lets you control how parameter data is
generated for reusable subsystems. (If you are not familiar with reusable
subsystem code generation, see “Nonvirtual Subsystem Code Generation
Options” in the Real-Time Workshop documentation.)

The Parameter structure menu is enabled when the Inline parameters
option is on. The menu lets you select the following options:

® Hierarchical: This option is the default. When the Hierarchical
option is selected, Real-Time Workshop Embedded Coder generates a
separate header file, defining an independent parameter structure, for each
subsystem that meets the following conditions:

= The value Reusable function is selected for the subsystem’s Real-Time
Workshop system code parameter, and the subsystem meets all
conditions for generation of reusable subsystem code.

= The subsystem does not access any parameters other than its own (such
as parameters of the root-level model).

When the Hierarchical option is selected, each generated subsystem
parameter structure is referenced as a substructure of the root-level
parameter data structure, which is therefore called a hierarchical data
structure.

® NonHierarchical: When this option is selected, Real-Time Workshop
Embedded Coder generates a single parameter data structure. This is a
flat data structure; subsystem parameters are defined as fields within the
structure. Using a nonhierarchical data structure can reduce compiler
padding between word boundaries in many cases; this produces more
efficient compiled code.

Guide to ERT Target Options

Data Initialization Subpane

* Remove root level I/O zero initialization: When this option is off (the
default), initialization code for root-level inports and outports whose value
is zero is generated. Otherwise, initialization code for such inports and
outports is not generated.

* Use memset to initialize floats and doubles to 0.0: When Use memset
to initialize floats and doubles to 0.0 is off (the default), additional
code is generated to set float and double storage explicitly to the value
0.0.When this option is on, the memset function clears internal storage
(regardless of type) to the integer bit pattern 0 (that is, all bits are off). The
additional code generated when the option is off, is slightly less efficient.

If the representation of floating-point zero used by your compiler and
target CPU is identical to the integer bit pattern 0, you can gain efficiency
by turning on this option.

* Remove internal state zero initialization: When this option is off (the
default), initialization code that initializes internal work structures (for
example, block states and block outputs) to zero is generated. Otherwise,
the initialization code is not generated.

¢ Optimize initialization code for model reference: When this option
is on (the default), Real-Time Workshop generates run-time initialization
code for a block that has states only if the block is in a system that can reset
its states, such as an enabled subsystem. This results in more efficient
code, but requires that you not refer to the model from a Model block that
resides in a system that resets its states. Such nesting results in an error.
Turn this option off only if your application requires you refer to the model
from Model blocks in systems that can reset their states.

3-53

3 Code Generation Options and Optimizations

3-54

Integer and Fixed-Point Subpane

* Remove code from floating-point to integer conversions that wraps
out-of-range values: This option causes Real-Time Workshop to remove
code that ensures that execution of the generated code produces the same
results as simulation when out-of-range conversions occur. This reduces
the size and increases the speed of the generated code at the cost of
potentially producing results that do not match simulation in the case of
out-of-range values.

Enabling this option affects code generation results only for out-of-range
values and cannot cause code generation results to differ from simulation
results for in-range values.

* Remove code that protects against division arithmetic exceptions:
This option suppresses generation of code that guards against fixed-point
division by zero. By default, this option is deselected.

When you select this option, simulation results and results from generated
code may no longer be in bit-for-bit agreement.

Simulation and Code Generation Subpane

Note The Application lifespan (days) parameter in the Simulation and
code generation subpane lets you minimize the allocation of memory

for absolute and elapsed time counters. The size of the counters is set
automatically to accommodate the value specified in Application lifespan
(days) field. For more information on the allocation and operation of absolute
and elapsed timers, see “Timing Services”, “Using Timers in Asynchronous
Tasks”, and “Application Lifespan” in the Real-Time Workshop documentation.

Tips for Optimizing the Generated Code

Tips for Optimizing the Generated Code

¢ “Introduction” on page 3-55

® “Using Auto-Optimized Targets” on page 3-55

® “Using Configuration Wizard Blocks” on page 3-56

® “Setting Hardware Implementation Parameters Correctly” on page 3-56
* “Removing Unnecessary Initialization Code” on page 3-58

® “Generating Pure Integer Code If Possible” on page 3-59

® “Disabling MAT-File Logging” on page 3-59

® “Using Virtualized Output Ports Optimization” on page 3-60

® “Using Stack Space Allocation Options” on page 3-61

¢ “Using External Mode with the ERT Target” on page 3-63

Introduction

Real-Time Workshop Embedded Coder features a number of code generation
options that can help you further optimize the generated code. This section
highlights code generation options you can use to improve performance and
reduce code size.

Most of the tips in this section apply specifically to the ERT target. See
also the “Optimizing a Model for Code Generation” section of the Real-Time
Workshop documentation for optimization techniques that are common to all
target configurations.

Using Auto-Optimized Targets

To make it easier for you to generate the most efficient code for your target
CPU, Real-Time Workshop Embedded Coder provides two auto-optimized
ERT target variants. These target variants are optimized, respectively, for
fixed-point and floating-point code generation.

Before generating and deploying code, consider using one of these optimized

target variants. The optimized ERT target variants are discussed in detail in
“Generating Efficient Code with Optimized ERT Targets” on page 6-26.

3-55

3 Code Generation Options and Optimizations

3-56

Using Configuration Wizard Blocks

Real-Time Workshop Embedded Coder provides a library of Configuration
Wizard blocks and scripts to help you configure and optimize code generation
from your models quickly and easily.

When you add one of the preset Configuration Wizard blocks to your model
and double-click it, an M-file script executes and configures all parameters
of the model’s active configuration set without user intervention. The preset
blocks configure the options optimally for common fixed- and floating-point
code generation scenarios.

You can also create custom Configuration Wizard scripts and blocks.

See “Optimizing Your Model with Configuration Wizard Blocks and Seripts”
on page 6-61 for detailed information.

Setting Hardware Implementation Parameters
Correctly

Correct specification of target-specific characteristics of generated code
(such as word sizes for char, short, int, and long data types, or desired
rounding behaviors in integer operations) can be critical in embedded
systems development. The Hardware Implementation category of options
in a configuration set provides a simple and flexible way to control such
characteristics in both simulation and code generation.

Before generating and deploying code, you should become familiar with the
options on the Hardware Implementation pane of the Configuration
Parameters dialog box. See the “Hardware Implementation Pane” section
of the Simulink User’s Guide and the “Hardware Implementation Options”
section of the Real-Time Workshop documentation for full details on the
Hardware Implementation pane.

By configuring the Hardware Implementation properties of your model’s
active configuration set to match the behaviors of your compiler and hardware,
you can generate more efficient code. For example, if you specify the Byte
ordering property, you can avoid generation of extra code that tests the byte
ordering of the target CPU.

Tips for Optimizing the Generated Code

You can use the rtwdemo_targetsettings demo model to determine some
implementation-dependent characteristics of your C or C++ compiler, as well
as characteristics of your target hardware. By using this model in conjunction
with your target development system and debugger, you can observe the
behavior of the code as it executes on the target. You can then use this
information to configure the Hardware Implementation parameters of
your model.

To use this model, type the command

rtwdemo_targetsettings

Follow the instructions in the model window.

3-57

3 Code Generation Options and Optimizations

3-58

Removing Unnecessary Initialization Code

Consider selecting the Remove internal state zero initialization and
Remove root level I/O zero initialization options on the Optimization
pane.

These options (both off by default) control whether internal data (block states
and block outputs) and external data (root inports and outports whose value
is zero) are initialized. Initializing the internal and external data whose value
is zero is a precaution and may not be necessary for your application. Many
embedded application environments initialize all RAM to zero at startup,
making generation of initialization code redundant.

However, be aware that if you select Remove internal state zero
initialization, it is not guaranteed that memory is in a known state each
time the generated code begins execution. If you turn the option on, running
a model (or a generated S-function) multiple times can result in different
answers for each run.

This behavior is sometimes desirable. For example, you can turn on Remove
internal state zero initialization if you want to test the behavior of

your design during a warm boot (that is, a restart without full system
reinitialization).

In cases where you have turned on Remove internal state zero
initialization but still want to get the same answer on every run from a
Real-Time Workshop Embedded Coder generated S-function, you can use
either of the following MATLAB commands before each run:

clear SFcnName

where SFcnName is the name of the S-function, or

clear mex

A related option, Use memset to initialize floats and doubles, lets you
control the representation of zero used during initialization. See “Data
Initialization Subpane” on page 3-53.

Tips for Optimizing the Generated Code

Note that the code still initializes data structures whose value is not zero
when Remove internal state zero initialization and Remove root level
I/0 zero initialization are selected.

Note also that data of ImportedExtern or ImportedExternPointer storage
classes is never initialized, regardless of the settings of these options.

Generating Pure Integer Code If Possible

If your application uses only integer arithmetic, deselect the Support
floating-point numbers option in the Software environment section of
the Interface pane to ensure that generated code contains no floating-point
data or operations. When this option is deselected, an error is raised if any
noninteger data or expressions are encountered during code generation. The
error message reports the offending blocks and parameters.

Disabling MAT-File Logging

Clear the MAT-file logging option in the Verification section of the
Interface pane. This setting is the default, and is recommended for
embedded applications because it eliminates the extra code and memory
usage required to initialize, update, and clean up logging variables. In
addition to these efficiencies, clearing the MAT-file logging option lets you
exploit further efficiencies under certain conditions. See “Using Virtualized
Output Ports Optimization” on page 3-60 for information.

Note also that code generated to support MAT-file logging invokes malloc,
which may be undesirable for your application.

3-59

3 Code Generation Options and Optimizations

3-60

Using Virtualized Output Ports Optimization

The virtualized output ports optimization lets you store the signal entering
the root output port as a global variable. This eliminates code and data
storage associated with root output ports when the MAT-file logging option
is cleared and the TLC variable FullRootOutputVector equals 0, both of
which are defaults for Real-Time Workshop Embedded Coder.

To illustrate this feature, consider the model shown in the following block
diagram. Assume that the signal exportedSig has exportedGlobal storage
class.

1
J_|_|_|_ b exported Sig -

Cut1

FulseGen ain

In the default case, the output of the Gain block is written to the signal

storage location, exportedSig. No code or data is generated for the Out1
block, which has become, in effect, a virtual block. This is shown in the

following code fragment.

/* Gain Block: <Root>/Gain */
exportedSig = rtb_PulseGen * VirtOutPortLogOFF_P.Gain_Gain;

In cases where either the MAT-file logging option is enabled, or
FullRootOutputVector = 1, the generated code represents root output ports
as members of an external outputs vector.

The following code fragment was generated from the same model shown in
the previous example, but with MAT-file logging enabled. The output port is
represented as a member of the external outputs vector VirtOutPortLogON_Y.
The Gain block output value is copied to both exportedSig and to the
external outputs vector.

/* Gain Block: <Root>/Gain */
exportedSig = rtb_PulseGen * VirtOutPortLogON_P.Gain_Gain;

/* Outport Block: <Root>/Outi */
VirtOutPortLogON_Y.Out1 = exportedSig;

Tips for Optimizing the Generated Code

The overhead incurred by maintenance of data in the external outputs vector
can be significant for smaller models being used to perform benchmarks.

Note that you can force root output ports to be stored in the external outputs
vector (regardless of the setting of MAT-file logging) by setting the TLC
variable FullRootOutputVector to 1. You can do this by adding the statement

%assign FullRootOutputVector = 1

to the Real-Time Workshop Embedded Coder system target file. Alternatively,
you can enter the assignment with TLC options on the Real-Time
Workshop pane of the Configuration Parameters dialog box.

For more information on how to control signal storage in generated code,
see the “Working with Data Structures” section of the Real-Time Workshop
documentation.

Using Stack Space Allocation Options

Real-Time Workshop offers a number of options that let you control how
signals in your model are stored and represented in the generated code. This
section discusses options that

® Let you control whether signal storage is declared in global memory space,
or locally in functions (that is, in stack variables).
¢ Control the allocation of stack space when using local storage.

For a complete discussion of signal storage options, see the “Working with
Data Structures” section of the Real-Time Workshop documentation.

If you want to store signals in stack space, you must turn the Enable local
block outputs option on. To do this

1 Select the Optimization tab of the Configuration Parameters dialog box.
Make sure that the Signal storage reuse option is selected. If Signal
storage reuse is off, the Enable local block outputs option is not
available.

2 Select the Enable local block outputs option. Click Apply if necessary.

3-61

3 Code Generation Options and Optimizations

3-62

Your embedded application may be constrained by limited stack space. When
the Enable local block outputs option is on, you can limit the use of stack
space by using the following TLC variables:

MaxStackSize: The total allocation size of local variables that are declared
by all block outputs in this model cannot exceed MaxStackSize (in bytes).
MaxStackSize can be any positive integer. If the total size of local block
output variables exceeds this maximum, the remaining block output
variables are allocated in global, rather than local, memory. The default
value for MaxStackSize is rtInf, that is, unlimited stack size.

Note Local variables in the generated code from sources other than local
block outputs and stack usage from sources such as function calls and
context switching are not included in the MaxStackSize calculation. For
overall executable stack usage metrics, you should do a target-specific
measurement, such as using runtime (empirical) analysis or static (code
path) analysis with object code.

MaxStackVariableSize: Limits the size of any local block output variable
declared in the code to N bytes, where N>0. A variable whose size exceeds
MaxStackVariableSize is allocated in global, rather than local, memory.
The default is 4096.

To set either of these variables, use assign statements in the system target
file (ert.tlc), as in the following example.

%assign MaxStackSize = 4096

You should write your %assign statements in the Configure RTW code
generation settings section of the system target file. The %assign
statement is described in the Target Language Compiler document.

Tips for Optimizing the Generated Code

Using External Mode with the ERT Target

Selecting the External mode option turns on generation of code to support
external mode communication between host (Simulink) and target systems.
Real-Time Workshop Embedded Coder supports all features of Simulink
external mode, as described in the “External Mode” section of the Real-Time
Workshop documentation.

This section discusses external mode options that may be of special interest
to embedded systems designers. The next figure shows the Data Exchange
subpane of the Configuration Parameters dialog box, Interface pane, with
External mode selected.

—Data exchang

Interface: I External mode LI

—Host/T arget interfac

Tranzport layer: I topip ﬂ ME-file name: ext_comm

MEx-file arguments: I

—Memory management

[Static memary allocation

Memory Management

Consider the Memory management option Static memory allocation
before generating external mode code for an embedded target. Static memory
allocation is generally desirable, as it reduces overhead and promotes
deterministic performance.

When you select the Static memory allocation option, static external mode
communication buffers are allocated in the target application. When Static
memory allocation is deselected, communication buffers are allocated
dynamically (with malloc) at run time.

3-63

3 Code Generation Options and Optimizations

3-64

Generation of Pure Integer Code with External Mode

Real-Time Workshop Embedded Coder supports generation of pure integer
code when external mode code is generated. To do this, select the External
mode option, and deselect the Support floating-point numbers option in
the Software environment section of the Interface pane.

This enhancement lets you generate external mode code that is free of any
storage definitions of double or float data type, and allows your code to run on
integer-only processors

If you intend to generate pure integer code with External mode on, note
the following requirements:

o All trigger signals must be of data type int32. Use a Data Type Conversion
block if needed.

¢ When pure integer code is generated, the simulation stop time specified
in the Solver options is ignored. To specify a stop time, run your target
application from the MATLAB command line and use the -tf option. (See
“Running the External Program” in the “External Mode” section of the
Real-Time Workshop documentation.) If you do not specify this option, the
application executes indefinitely (as if the stop time were inf).

When executing pure integer target applications, the stop time specified
by the -tf command line option is interpreted as the number of base rate
ticks to execute, rather than as an elapsed time in seconds. The number of
ticks is computed as

stop time in seconds / base rate step size in seconds

Generating an HTML Code Generation Report

Generating an HTML Code Generation Report

The Real-Time Workshop Embedded Coder code generation report is an
enhanced version of the HTML code generation report normally generated by
Real-Time Workshop. The report consists of several sections:

¢ The Generated Source Files section of the Contents pane contains a table
of source code files generated from your model. You can view the source
code in a MATLAB Web browser window. Optional hyperlinks within the
displayed source code let you view the blocks or subsystems from which the
code was generated. Click on the hyperlinks to view the relevant blocks or
subsystems in a Simulink model window.

¢ The Summary section lists version and date information, TLC options used
in code generation, and Simulink model settings.

¢ The Optimizations section lists the optimizations used during the build,
and also those that are available. If you chose options that led to generation
of nonoptimal code, they are marked in red. This section can help you select
options that better optimize your code.

¢ The report also includes information on other code generation options, code
dependencies, and links to relevant documentation.

To generate a code generation report,

1 Open the Configuration Parameters dialog box and select the Real-Time
Workshop pane.

2 In the Documentation subpane, select Generate HTML report.
By default, Include hyperlinks to model and Launch report
automatically are also selected, as shown in the figure below.

You can deselect either or both these options if desired.

3-65

3 Code Generation Options and Optimizations

3-66

#, Configuration Parameters: untitled/Configuration (Active) x|
Select: — T arget selection -
- Soher Systern target file: Iert.tlc Erowse... |
- [1ata Import/E xport
- [ptimization Language: I C LI
[~ Diagnostics Description: Fieal-Time “Workshop Embedded Coder [ho auto configuration]
- S ample Time
- Data Validity —Documentation
- Type Conversion
- Connectivik
Compatibilitﬁ ¥ Launch report automatically
- Model Referencing W Include hyperlinks to model
- Hardware |mplementation
- Madel Referencing r—Build proc:
[=-Real-Time Work shop TILE et I
- Comments Mk efil fiqurati
.- Symbals akefile configuration
- Custom Code ¥ Generate makefile
-~ Debug M ake command: Imake_rtw
- nterface
- Code Style Template makefile: Iert_default_tmf
- Templates
- [Data Placement Cust n |
- Data Type Replaceme [LSO Siarage Ela

- bemory Sections I lgnore custom storage classes —

[~ Generate code only Build | _I
Ok I Lancel | Help | Apply |

3 Generate code from your model or subsystem (for example, for a model, by

clicking Build on the Real-Time Workshop pane of the Configuration
Parameters dialog box).

Real-Time Workshop writes the code generation report files in the html
subdirectory of the build directory. The top-level HTML report file is named
model_codegen_rpt.html or subsystem_codegen_rpt.html.

If you selected Launch report automatically, Real-Time Workshop
automatically opens a MATLAB Web browser window and displays the
code generation report.

If you did not select Launch report automatically, you can

open the code generation report (model codegen_rpt.html or
subsystem_codegen_rpt.html) manually into a MATLAB Web browser
window, or into another Web browser.

Generating an HTML Code Generation Report

6 If you selected Include hyperlinks to model, hyperlinks to blocks in the
generating model are created in the report files. When you view the report
files in MATLAB, clicking on these hyperlinks displays and highlights
the referenced blocks in the model.

Notes

¢ For large models (containing over 1000 blocks), you may find that HTML
report generation takes longer than you want. In this case, consider
clearing the Include hyperlinks to model check box. The report will
be generated faster.

® You can also view the HTML report files, as well as the generated code
files, in the Simulink Model Explorer. See the Real-Time Workshop
documentation for details.

3-67

3 Code Generation Options and Optimizations

Generating Code Within MISRA-C Guidelines

3-68

The Motor Industry Software Reliability Association (MISRA) has established
"Guidelines for the Use of the C Language in Critical Systems" (MISRA-C).
For general information about MISRA-C, see www.misra-c.com.

For information about using Real-Time Workshop Embedded Coder within
MISRA-C guidelines, see Technical Solution 1-1IFPOW on the MathWorks
Web site.

http://www.misra-c.com
http://www.mathworks.com/support/solutions/data/1-1IFP0W.html

Automatic S-Function Wrapper Generation

Automatic S-Function Wrapper Generation

® “Overview” on page 3-69
® “Generating an ERT S-Function Wrapper” on page 3-70

® “S-Function Wrapper Generation Limitations” on page 3-71

Overview

An S-function wrapper is an S-function that calls your C or C++ code from
within Simulink. S-function wrappers provide a standard interface between
Simulink and externally written code, allowing you to integrate your code into
a model with minimal modification. This is useful for software-in-the-loop
(SIL) code verification (validating your generated code in Simulink), as well
as for simulation acceleration purposes. For a complete description of wrapper
S-functions, see the Simulink Writing S-Functions document.

Using the Real-Time Workshop Embedded Coder Create Simulink
(S-Function) block option, you can build, in one automated step:

® A non-inlined C or C++ MEX S-function wrapper that calls Real-Time
Workshop Embedded Coder generated code

® A model containing the generated S-function block, ready for use with
other blocks or models

When the Create Simulink (S-Function) block option is on, Real-Time
Workshop generates an additional source code file, model sf.c or .cpp, in the
build directory. This module contains the S-function that calls the Real-Time
Workshop Embedded Coder code that you deploy. You can use this S-function
within Simulink.

The build process then compiles and links model_sf.c or .cpp with model.c
or .cpp and the other Real-Time Workshop Embedded Coder generated code
modules, building a MEX-file. The MEX-file is named model sf.mexext.
(mexext is the file extension for MEX-files on your platform, as given by
the MATLAB mexext command.) The MEX-file is stored in your working
directory. Finally, Real-Time Workshop creates and opens an untitled model
containing the generated S-Function block.

3-69

3 Code Generation Options and Optimizations

Note To generate a wrapper S-function for a subsystem, you can use a

right-click subsystem build. Right-click the subsystem block in your model,

select Real-Time Workshop > Generate S-Function, and in the Generate

S-Function dialog box, select Use Embedded Coder and click Build.

Generating an ERT S-Function Wrapper

To generate an S-function wrapper for your Real-Time Workshop Embedded

Coder code, open your ERT-based Simulink model and do the following:

1 Open the Configuration Parameters dialog box.

2 Select the Interface pane.

3 Select the Create Simulink (S-Function) block option, as shown in

this figure.

#, Configuration Parameters: untitled /Configuration (Active)

Select:

- Solver
- [1ata Import/E xport
- [ptimization
- Diagnostics
Sample Time
[rata W alidity
Type Conversion
Connectivity
Compatibility
- Model Referencing
- Hardware |mplementation
- Model Referencing
- Real-Time Waorkshop
- Comments
- Symbaols
- Custom Code
- Diebug
- [nterface
- Code Style
- Templates
- Data Placement
- [ata Type Replace...
- bemory Sections

— Software envirohment

Target floating-point math environment: IESS.-"ESD [AMS1]

=l

Utility function generation IAuto

Support: ¥ floating-paint numbers ¥ norfinite numbers

¥ absolute time [T continuous time

5
V' complex numbers

™ rmorvinlined S-unctions

— Code interface

[T Generate reusable cods
™ Suppress enar status in reaktime model data structure

Configure Functions ...

™ GRT compatible call interface W Single output/update function W Terminate function required

— Werification

Support software-in-the-loop [SIL] testing
’7|7 Create Simulink [S-Function] block

™ Enable portable word sizes

™ MAT-file logging

— Data exchange

Interface: INone

o]

Cancel | Help |

b |x

4 Configure the other code generation options as required.

3-70

Automatic S-Function Wrapper Generation

5 To ensure that memory for the S-Function is initialized to zero, you should
deselect the following options in the Data Initialization subpane of the
Optimization pane:

¢ Remove root level I/0O zero initialization
¢ Remove internal state zero initialization

¢ Use memset to initialize floats and doubles to 0.0
(See also “Data Initialization Subpane” on page 3-53.)
6 Select the Real-Time Workshop pane and click the Build button.

7 When the build process completes, an untitled model window opens. This
model contains the generated S-Function block.

o

File Edit WYiew Simulation Format Tools Help

DSES| =Bz of

RTW S-Function

Fl1o0% |Fixedstept -

8 Save the new model.

9 The generated S-Function block is now ready to use with other blocks or
models in Simulink.

S-Function Wrapper Generation Limitations

The following limitations apply to Real-Time Workshop Embedded Coder
S-function wrapper generation:

® Continuous sample time is not supported. The Support continuous time

option should not be selected when generating a Real-Time Workshop
Embedded Coder S-function wrapper.

3-71

3 Code Generation Options and Optimizations

3-72

Models that contain S-function blocks for which the S-function is not
inlined with a TLC file are not supported when generating a Real-Time
Workshop Embedded Coder S-function wrapper.

You cannot use multiple instances of a Real-Time Workshop Embedded
Coder generated S-function block within a model, because the code uses
static memory allocation. Each instance potentially can overwrite global
data values of the others.

Real-Time Workshop Embedded Coder S-function wrappers can be used
with other blocks and models for such purposes as SIL code verification and
simulation acceleration, but cannot be used for code generation.

A MEX S-function wrapper must only be used in the version of MATLAB in
which the wrapper is created.

Verifying Generated Code with Software-in-the-loop Testing

Verifying Generated Code with Software-in-the-loop

Testing

® “Overview” on page 3-73

® “Validating Generated Code on the MATLAB Host Computer Using
Hardware Emulation” on page 3-74

® “Validating ERT Production Code on the MATLAB Host Computer Using
Portable Word Sizes” on page 3-75

Overview

Real-Time Workshop Embedded Coder provides software-in-the-loop (SIL)
code verification for subsystems using ERT S-function wrappers, described in
“Automatic S-Function Wrapper Generation” on page 3-69. When processor
word sizes differ between host and target platforms (for example, a 32-bit host
and a 16-bit target), there are two ways to configure your Simulink model to
simulate target behavior on the MATLAB host with SIL:

¢ Enable and select Emulation hardware settings on the Hardware
Implementation pane of the Configuration Parameters dialog

® Select the Enable portable word sizes option on the Interface pane of
the Configuration Parameters dialog

Select the hardware emulation method if you need the MATLAB host
computer to simulate the bit-true behavior of the generated code on the target
deployment system. In this case, the code that you generate for simulation
on the MATLAB host might contain additional code, such as data type casts,
that is necessary to ensure behavior consistent with the target environment.
(See also “Optimization Options” in the Real-Time Workshop documentation
for settings in the Code generation subpane of the Optimization pane
that affect the generated code.) After SIL testing on the MATLAB host, you
must select None for Emulation hardware and then regenerate code for
the target before deployment.

Select the portable word sizes method if you want to generate code that can
be compiled without alteration both for SIL testing on the MATLAB host
computer and deployment on the target system. In this case, the code that
you generate has conditional processing macros that allow you to first compile

3-73

3 Code Generation Options and Optimizations

3-74

for the host platform, using the compiler option -DPORTABLE_WORDSIZES, and
then compile for the target platform, omitting the option.

To illustrate both methods of configuring your model to simulate target
behavior on the MATLAB host, The MathWorks provides the demo model
rtwdemo_sil. The demo allows you to simulate the same model using each
method, and to compare model configuration settings and results.

Validating Generated Code on the MATLAB Host
Computer Using Hardware Emulation

Real-Time Workshop Embedded Coder provides Emulation hardware
settings that support code generation for host-target configurations in which
the processor word sizes differ between host and target platforms (for
example, a 32-bit host and a 16-bit target). Selecting MATLAB Host Computer
as the Emulation hardware device type allows you to generate model
code with any additional code, such as data type casts, that is necessary to
ensure behavior on the MATLAB host computer that is consistent with the
target environment.

To use this feature, go to the Emulation hardware subpane of the
Hardware Implementation pane of the Configuration Parameters dialog
box, clear the None option if it is selected, and select MATLAB Host Computer
as the Device type. Also, go to the Interface pane, select Create Simulink
(S-Function) block, and make sure that Enable portable word sizes is
cleared.

r— Emulation hardware [code generation only]
™ Mone
Device type: IMATLAB Host Computer LI
Mumber of bits: char: IS— shart: I‘IB— ink: |32—
long: |32— native word size: |32—
Byte ordering: |Little Endian _I
¥ | Shift right an a sigred inteer as arithmetic shift

You can then right-click the subsystem that you want to test on the MATLAB
host, and select Real-Time Workshop > Build Subsystem to build it. This
will generate an S-function wrapper for the generated subsystem code, which
can be used on the host to verify that the generated code provides the same
result as the original subsystem.

Verifying Generated Code with Software-in-the-loop Testing

For an example of SIL testing using hardware emulation, see rtwdemo_sil.

Validating ERT Production Code on the MATLAB Host
Computer Using Portable Word Sizes

Real-Time Workshop Embedded Coder provides a model configuration option,
Enable portable word sizes, that supports code generation for host-target
configurations in which the processor word sizes differ between host and
target platforms (for example, a 32-bit host and a 16-bit target). Selecting
the Enable portable word sizes option allows you to generate code with
conditional processing macros that allow the same generated source code
files to be used both for SIL testing on the host platform and for production
deployment on the target platform.

To use this feature, select both Create Simulink (S-Function) block and
Enable portable word sizes on the Interface pane of the Configuration
Parameters dialog box. Also, make sure that Emulation hardware is set to
None on the Hardware Implementation pane.

Werification

Support software-in-the-loop [SIL] testing
’7|7 Create Simulink [S-Function) block. [V Enable portable word sizes

™ MAT-file logging

When you generate code from your model, data type definitions are
conditionalized such that tmwtypes.h is included to support SIL testing

on the host platform and Real-Time Workshop types are used to support
deployment on the target platform. For example, in the generated code below,
the first two lines define types for host-based SIL testing and the bold lines
define types for target deployment:

#ifdef PORTABLE_WORDSIZES /* PORTABLE_WORDSIZES defined */
include "tmwtypes.h"

#else /* PORTABLE_WORDSIZES not defined */

#define _ TMWTYPES_
#include <limits.h>

typedef signed char int8_T;
typedef unsigned char uint8_T;

3-75

3 Code Generation Options and Optimizations

3-76

typedef int int16_T;

typedef unsigned int uinti16_T;
typedef long int32_T;

typedef unsigned long uint32_T;
typedef float real32_T;

typedef double real64_T;

#endif /* PORTABLE_WORDSIZES */

To build the generated code for SIL testing on the host platform, the definition
PORTABLE_WORDSIZES should be passed to the compiler, for example by using
the compiler option -DPORTABLE_WORDSIZES. To build the same code for target
deployment, the code should be compiled without the PORTABLE_WORDSIZES
definition.

For an example of SIL testing using portable word sizes, see rtwdemo_sil.

Portable Word Sizes Limitations
The following limitations apply to performing SIL testing using the Enable
portable word sizes model configuration parameter.

® Numerical results of the S-function simulation on the MATLAB host
may differ from results on the actual target due to differences in target
characteristics, such as

= C integral promotion in expressions may be different on the target
processor

= Signed integer division rounding behavior may be different on the target
processor

= Signed integer arithmetic shift right may behave differently on the
target processor

= Floating-point precision may be different on the target processor

Exporting Function-Call Subsystems

Exporting Function-Call Subsystems

e “Overview” on page 3-77

e “Exported Subsystems Demo” on page 3-77

¢ “Additional Information” on page 3-78

¢ “Requirements for Exporting Function-Call Subsystems” on page 3-78
¢ “Techniques for Exporting Function-Call Subsystems” on page 3-80

* “Optimizing Exported Function-Call Subsystems” on page 3-81

e “Exporting Function-Call Subsystems That Depend on Elapsed Time” on
page 3-81

¢ “Function-Call Subsystem Export Example” on page 3-82

¢ “Function-Call Subsystems Export Limitations” on page 3-86

Overview

Real-Time Workshop Embedded Coder provides code export capabilities that
you can use to

e Automatically generate code for

= A function-call subsystem that contains only blocks that support code
generation

= A virtual subsystem that contains only such subsystems and a few other
types of blocks

¢ Optionally generate an ERT S-function wrapper for the generated code

You can use these capabilities only if the subsystem and its interface to the
Simulink model conform to certain requirements and constraints, as described
in “Requirements for Exporting Function-Call Subsystems” on page 3-78. For
limitations that apply, see “Function-Call Subsystems Export Limitations”

on page 3-86.

Exported Subsystems Demo

To see a demo of exported function-call subsystems, type
rtwdemo_export_functions in the MATLAB Command Window.

3-77

3 Code Generation Options and Optimizations

3-78

Additional Information

See the following in the Simulink documentation for additional information
relating to exporting function-call subsystems:

* “Systems and Subsystems”
* “Signals”

* “Triggered Subsystems”

¢ “Function-Call Subsystems”

e Writing S-Functions

If you want to use Stateflow blocks to trigger exportable function-call
subsystems, you may also need information from the Stateflow and Stateflow
Coder User’s Guide.

Requirements for Exporting Function-Call Subsystems

To be exportable as code, a function-call subsystem, or a virtual subsystem
that contains such subsystems, must meet certain requirements. Most
requirements are similar for either type of export, but some apply only

to virtual subsystems. The requirements that affect all Simulink code
generation also apply.

For brevity, exported subsystem in this section means only an exported
function-call subsystem or an exported virtual subsystem that contains such
subsystems. The requirements listed do not necessarily apply to other types
of exported subsystems.

Requirements for All Exported Subsystems

These requirements apply to both exported function-call subsystems and
exported virtual subsystems that contain such subsystems.

Blocks Must Support Code Generation. All blocks within an exported
subsystem must support code generation. However, blocks outside the
subsystem need not support code generation unless they will be converted to
code in some other context.

Exporting Function-Call Subsystems

Blocks Must Not Use Absolute Time. Certain blocks use absolute time.
Blocks that use absolute time are not supported in exported function-call
subsystems. For a complete list of such blocks, see “Blocks That Depend on
Absolute Time” in the Real-Time Workshop documentation.

Blocks Must Not Depend on Elapsed Time. Certain blocks, like the
Sine Wave block and Discrete Integrator block, depend on elapsed time. If
an exported function-call subsystem contains any blocks that depend on
elapsed time, the subsystem must specify periodic execution. See “Exporting
Function-Call Subsystems That Depend on Elapsed Time” on page 3-81 in the
Real-Time Workshop documentation.

Trigger Signals Require a Common Source. If more than one trigger
signal crosses the boundary of an exported system, all of the trigger signals
must be periodic and originate from the same function-call initiator.

Trigger Signals Must Be Scalar. A trigger signal that crosses the boundary
of an exported subsystem must be scalar. Input and output data signals that
do not act as triggers need not be scalar.

Data Signals Must Be Nonvirtual. A data signal that crosses the boundary
of an exported system cannot be a virtual bus, and cannot be implemented

as a Goto-From connection. Every data signal crossing the export boundary
must be scalar, muxed, or a nonvirtual bus.

Requirements for Exported Virtual Subsystems

These requirements apply only to exported virtual subsystems that contain
function-call subsystems.

Virtual Subsystem Must Use Only Permissible Blocks. The top level of
an exported virtual subsystem that contains function-call subsystem blocks
can contain only the following other types of blocks:

Input and Output blocks (ports)

Constant blocks (including blocks that resolve to constants, such as Add)
Merge blocks

Virtual connection blocks (Mux, Demux, Bus Creator, Bus Selector, Signal
Specification)

3-79

3 Code Generation Options and Optimizations

e Signal-viewer blocks, such as Scope blocks

These restrictions do not apply within function-call subsystems, whether
or not they appear in a virtual subsystem. They apply only at the top level
of an exported virtual subsystem that contains one or more function-call
subsystems.

Constant Blocks Must Be Inlined. When a constant block appears at
the top level of an exported virtual subsystem, the containing model must
check Inline parameters on the Optimization pane of the Configuration
Parameters dialog box.

Constant Outputs Must Specify a Storage Class. When a constant
signal drives an output port of an exported virtual subsystem, the signal
must specify a storage class.

Techniques for Exporting Function-Call Subsystems

To export a function-call subsystem, or a virtual subsystem that contains
function-call subsystems,

1 Ensure that the subsystem to be exported satisfies the “Requirements for
Exporting Function-Call Subsystems” on page 3-78.

2 In the Configuration Parameters dialog box:

a On the Real-Time Workshop pane, specify an ERT code generation
target such as ert.tlc.

b If you want an ERT S-function wrapper for the generated code, go to the
Interface pane and select Create Simulink (S-function) block.

¢ Click OK or Apply.

3 Right-click the subsystem block and choose Real-Time Workshop >
Export Functions from the context menu.

The Build code for subsystem: Subsystem dialog box appears. This
dialog box is not specific to exporting function-call subsystems, and
generating code does not require entering information in the box.

4 Click Build.

3-80

Exporting Function-Call Subsystems

The MATLAB Command Window displays messages similar to those for
any code generation sequence. Simulink generates code and places it in
the working directory.

If you checked Create Simulink (S-function) block in step 2b, Simulink
opens a new window that contains an S-function block that represents

the generated code. This block has the same size, shape, and connectors
as the original subsystem.

Code generation and optional block creation are now complete. You can test
and use the code and optional block as you could any generated ERT code
and S-function block.

Optimizing Exported Function-Call Subsystems

You can use Real-Time Workshop options to optimize the code generated for
a function-call subsystem or virtual block that contains such subsystems.
To obtain faster code,

* Specify a storage class for every input signal and output signal that crosses
the boundary of the subsystem.

® For each function-call subsystem to be exported (whether directly or within
a virtual subsystem):

a Right-click the subsystem and choose Subsystem Parameters from
the context menu.

b Set the Real-Time Workshop system code parameter to Auto.
¢ Click OK or Apply.

Exporting Function-Call Subsystems That Depend on
Elapsed Time

Some blocks, such as the Sine Wave block (if sample-based) and the
Discrete-Time Integrator block, depend on elapsed time. See “Absolute and
Elapsed Time Computation” in the Real-Time Workshop documentation for
more information.

3-81

3 Code Generation Options and Optimizations

3-82

When a block that depends on elapsed time exists in a function-call subsystem,
the subsystem cannot be exported unless it specifies periodic execution. To
provide the necessary specification,

1 Right-click the trigger port block in the function-call subsystem and choose
TriggerPort Parameters from the context menu.

2 Specify periodic in the Sample time type field.

3 Set the Sample time to the same granularity specified (directly or by
inheritance) in the function-call initiator.

4 Click OK or Apply.

Function-Call Subsystem Export Example

The next figure shows the top level of a model that uses a Stateflow chart
named Chart to input two function-call trigger signals (denoted by dash-dot
lines) to a virtual subsystem named Subsystem.

Togg|e e ——————— _’ In1
Select|[— - —mimim e _> In2
ol e———--——Pp{ 1
Chart <DataOut>
l—» In3 Outi
-y,
Dataln1
In1

—> In4

@ Dataln2 Subsystem
In2

The next figure shows the contents of Subsystem in the previous figure. The
subsystem contains two function-call subsystems, each driven by one of the
signals input from the top level.

Exporting Function-Call Subsystems

In1 In2

<Toggle> : <Select>i

Toggle() Select()
atalnt

In3

Selector P |Selector DataOut —><D

<SelectorSignal> DataQut
Outt

@—> Dataln2
) <Dataln2>

|
Toggle Output n Select Input

Subsystem Subsystem

In the preceding model, the Stateflow chart can assert either of two scalar
signals, Toggle and Select.

* Asserting Toggle toggles the Boolean state of the function-call subsystem
Toggle Output Subsystem.

® Asserting Select causes the function-call subsystem Select Input
Subsystem to assign the value of DataIni or DatalIn2 to its output signal.
The value assigned depends on the current state of Toggle Output
Subsystem.

The following generated code implements the subsystem named Subsystem.
The code is typical for virtual subsystems that contain function-call
subsystems. It specifies an initialization function and a function for each
contained subsystem, and would also include functions to enable and disable
subsystems if applicable.

#include "Subsystem.h"
#include "Subsystem_private.h"

/* Exported block signals */

real_T DataIni; * '<Root>/In3' */

real T Dataln2; * '<Root>/In4' */

real T DataOut; /* '<84>/Switch' */

boolean_ T SelectorSignal; /* '<S5>/Logical Operator' */

~ —

/* Exported block states */

3-83

3 Code Generation Options and Optimizations

3-84

boolean_T SelectorState; /* '<85>/Unit Delay' */

/* Real-time model */
RT_MODEL_Subsystem Subsystem_M_;
RT_MODEL_Subsystem *Subsystem_M = &Subsystem_M_;

/* Initial conditions for exported function: Toggle */

void Toggle Init(void)
{

/* Initial conditions for function-call system: '<S1>/Toggle Output Subsystem' */

/* InitializeConditions for UnitDelay: '<S5>/Unit Delay' */
SelectorState = Subsystem_P.UnitDelay_XO;

/* Output and update for exported function: Toggle */

void Toggle(void)

{
/* Output and update for function-call system: '<S1>/Toggle Output Subsystem' */

/* Logic: '<S85>/Logical Operator' incorporates:
* UnitDelay: '<S85>/Unit Delay'

*/

SelectorSignal = !SelectorState;

/* Update for UnitDelay: '<S5>/Unit Delay' */
SelectorState = SelectorSignal;

/* Output and update for exported function: Select */

void Select(void)

{
/* Output and update for function-call system: '<S1>/Select Input Subsystem' */

/* Switch: '<84>/Switch' incorporates:
* Inport: '<Root>/In3'
* Inport: '<Root>/In4'

Exporting Function-Call Subsystems

*/
if(SelectorSignal) {
DataOut = Datalni;
} else {
DataOut = DataIn2;
}

/* Model initialize function */

void Subsystem_initialize(void)

{
/* initialize error status */
rtmSetErrorStatus (Subsystem_M,

/* block I/0 */

/* exported global signals */
DataOut = 0.0;

SelectorSignal = FALSE;

/* states (dwork) */

/* exported global states */
SelectorState = FALSE;

/* external inputs */
DataIni = 0.0;

DataIn2 = 0.0;

Toggle Init();

/* Model terminate function */

void Subsystem_terminate(void)

{

/* (no terminate code required)

(const char_T *)0);

*/

3-85

3 Code Generation Options and Optimizations

3-86

Function-Call Subsystems Export Limitations
The function-call subsystem export capabilities have the following limitations:

Real-Time Workshop options do not control the names of the files containing
the generated code. All such filenames begin with the name of the exported
subsystem. Each filename is suffixed as appropriate to the file.

Real-Time Workshop options do not control the names of top-level functions
in the generated code. Each function name reflects the name of the signal
that triggers the function, or for an unnamed signal, the block from which
the signal originates.

This release cannot export reusable code for a function-call subsystem.
Checking Configuration Parameters > Real-Time Workshop >
Interface > Generate reusable code has no effect on the generated
code for the subsystem.

This release supports code generation for ERT generated S-function blocks
if the block does not have function-call input ports, but the ERT S-function
block will appear as a noninlined S-function in the generated code.

This release supports an ERT generated S-function block in accelerator
mode only if its function-call initiator is noninlined in accelerator mode.
Examples of noninlined initiators include all Stateflow charts.

The ERT S-function wrapper must be driven by a Level-2 S-function
initiator block, such as a Stateflow chart or the built-in Function-call
Generator block.

An asynchronous (sample-time) function-call system can be exported,
but this release does not support the ERT S-function wrapper for an
asynchronous system.

This release does not support code generation for an ERT generated
S-function block if the block was generated as a wrapper for exported
function calls.

The output port of an ERT generated S-function block cannot be merged
using the Merge block.

This release does not support MAT-file logging for exported function calls.
Any specification that enables MAT-file logging is ignored.

The use of the TLC function LibIsFirstInit is deprecated for exported
function calls.

Exporting Function-Call Subsystems

® The model_initialize function generated in the code for an exported
function-call subsystem never includes a firstTime argument, regardless
of the value of the model configuration parameter IncludeERTFirstTime.
Thus, you cannot call model_initialize at a time greater than start time,
for example, to reset block states.

3-87

3 Code Generation Options and Optimizations

3-88

Nonvirtual Subsystem Modular Function Code Generation

® “Overview” on page 3-88

¢ “Configuring Nonvirtual Subsystems for Generating Modular Function
Code” on page 3-89

e “Examples of Modular Function Code for Nonvirtual Subsystems” on page
3-93

® “Nonvirtual Subsystem Modular Function Code Limitations” on page 3-99

Overview

Real-Time Workshop Embedded Coder provides a subsystem option,
Function with separate data, that allows you to generate modular
function code for nonvirtual subsystems, including atomic subsystems and
conditionally executed subsystems.

By default, the generated code for a nonvirtual subsystem does not separate a
subsystem’s internal data from the data of its parent Simulink model. This
can make it difficult to trace and test the code, particularly for nonreusable
subsystems. Also, in large models containing nonvirtual subsystems, data
structures can become large and potentially difficult to compile.

The Subsystem Parameters dialog box option Function with separate data
allows you to generate subsystem function code in which the internal data for
a nonvirtual subsystem is separated from its parent model and is owned by
the subsystem. As a result, the generated code for the subsystem is easier

to trace and test. The data separation also tends to reduce the size of data
structures throughout the model.

Note Selecting the Function with separate data option for a nonvirtual
subsystem has no semantic effect on the parent Simulink model.

To be able to use this option,

¢ Your Simulink model must use an ERT-based system target file (requires a
license for Real-Time Workshop Embedded Coder).

Nonvirtual Subsystem Modular Function Code Generation

® Your subsystem must be configured to be atomic or conditionally executed
(for more information, see “Systems and Subsystems” in the Simulink
documentation).

® Your subsystem must use the Function setting for the Real-Time
Workshop system code parameter.

To configure your subsystem for generating modular function code, you
invoke the Subsystem Parameters dialog box and make a series of selections
to display and enable the Function with separate data option. See
“Configuring Nonvirtual Subsystems for Generating Modular Function
Code” on page 3-89 and “Examples of Modular Function Code for Nonvirtual
Subsystems” on page 3-93 for details. For limitations that apply, see
“Nonvirtual Subsystem Modular Function Code Limitations” on page 3-99.

For more information about generating code for atomic subsystems, see the
sections “Nonvirtual Subsystem Code Generation” and “Generating Code and
Executables from Subsystems” in the Real-Time Workshop documentation.

Configuring Nonvirtual Subsystems for Generating
Modular Function Code

This section summarizes the steps needed to configure a subsystem in a
Simulink model for modular function code generation.

1 Verify that the Simulink model containing the subsystem uses an
ERT-based system target file (see the System target file parameter on the
Real-Time Workshop pane of the Configuration Parameters dialog box).

2 In your Simulink model, select the subsystem for which you want to
generate modular function code and launch the Subsystem Parameters
dialog box (for example, right-click the subsystem and select Subsystem
Parameters). The dialog box for an atomic subsystem is shown below. (In
the dialog box for a conditionally executed subsystem, the dialog box option
Treat as atomic unit is greyed out, and you can skip Step 3.)

3-89

3 Code Generation Options and Optimizations

m Function Block Parameters: Subsystem x|

— Subsystem

Select the settings for the subsystem block.

—Parameters

ReadMwnte permiszions: I Readw/nte ﬂ

Mame of error callback function:

Permit hierarchical resolution:l Al LI

[~ Treat as atomic unit

Ok I Cancel | Help | Apply |

3 If the Subsystem Parameters dialog box option Treat as atomic unit is
available for selection but not selected, the subsystem is neither atomic nor
conditionally executed. Select the option Treat as atomic unit. After you
make this selection, the Real-Time Workshop system code parameter
is displayed.

m Function Block Parameters: Subsystem x|

— Subsystem

Select the settings for the subsystem block.

—Parameters

¥ Show port labels
ReadMwnte permissions:l Readw/nte ﬂ

Mame of error callback function:

Permit hierarchical resolution: | &l LI

I~ Minimize algebraic loop occurences

reat ag atomic uniti

Sample time [-1 for inherited):
[

Real-Time Workshop system code:l Auto LI

Ok I LCancel Help | Apply |

3-90

Nonvirtual Subsystem Modular Function Code Generation

4 For the Real-Time Workshop system code parameter, select the value
Function. After you make this selection, the Function with separate
data option is displayed.

m Function Block Parameters: Subsystem x|

— Subsystem

Select the settings for the subspstem block.

— Parameter

[V Show port labels
ReadMwite permissions:l Readw/ite LI

Mame of error callback function:

Permit hierarchical resolution: I All LI

[v Treat as atomic unit

[~ Minimize algebraic loop occurences
Sample time [-1 for inherited);

|1

Real-Time Waorkshop systern code: | {i =il

Real-Time 'Workshop function name options:l Auto LI

Real-Time Workshop file name options:l Auto LI

[~ Function with separate data

temorny section for initialize/terminate Functions:l Inkerit fram model LI

Mernary section far execution functions:l Inherit from model LI
oK Cancel | Help | Apply |

Note Before you generate nonvirtual subsystem function code with

the Function with separate data option selected, you might want to
generate function code with the option deselected and save the generated
function .c and .h files in a separate directory for later comparison.

3-91

3 Code Generation Options and Optimizations

5 Select the Function with separate data option. After you make this
selection, additional configuration parameters are displayed.

m Function Block Parameters: Subsystem x|

— Subsystem

Select the settings for the subspstem block.

— Parameter
[V Show port labels
ReadMwnte permissions:l Readw/nte LI

Mame of error callback function:

Permit hierarchical resolution: I All LI

[v Treat as atomic unit
[~ Minimize algebraic loop occurences

Sample time [-1 for inherited):

[

Real-Time Workshop system code:l Function LI
Real-Time Workshop function name options:l Auto ﬂ
Real-Time ‘Workshop file name options:l Auto LI
[w {Function with separate data:

temorny section for initialize/terminate Functions:l Inhkerit fram model ﬂ
Memony section for execution functions:l Inkerit from model LI
Memory zection far constants:l Inherit fram model ;I
temary section for intemal data:l Inherit fram model LI
Mernary section far parameters:l Inherit from model LI

Ok LCancel | Help | Apply |

Note To control the naming of the subsystem function and the subsystem
files in the generated code, you can modify the subsystem parameters
Real-Time Workshop function name options and Real-Time
Workshop file name options.

6 To save your subsystem parameter settings and exit the dialog box, click
OK.

3-92

Nonvirtual Subsystem Modular Function Code Generation

This completes the subsystem configuration needed to generate modular
function code. You can now generate the code for the subsystem and examine
the generated files, including the function .c and .h files named according to
your subsystem parameter specifications. For more information on generating
code for nonvirtual subsystems, see “Nonvirtual Subsystem Code Generation”
in the Real-Time Workshop documentation. For examples of generated
subsystem function code, see “Examples of Modular Function Code for
Nonvirtual Subsystems” on page 3-93.

Examples of Modular Function Code for Nonvirtual
Subsystems

To illustrate the effect of selecting the Function with separate data
option for a nonvirtual subsystem, the following procedure generates atomic
subsystem function code with and without the option selected and compares
the results.

1 Open MATLAB and launch rtwdemo_atomic.mdl using the MATLAB
command rtwdemo_atomic. Examine the Simulink model.

Sum
In1 out1 1)
In1 Out1
551
3
Gain

2 Double-click the SS1 subsystem and examine the contents. (You can close
the subsystem window when you are finished.)

3-93

3 Code Generation Options and Optimizations

E!rtwdemu_atumic,.-"ﬁﬁl

File Edit “iew Simulation Format Tools

Help

bDeMH&E| i B2R[(ES 4|0

KTs
(1)
In1 z-1
Integrator

w1

Out1

3 Use the Configuration Parameters dialog box to change the model’s System
target file from GRT to ERT. For example, from the Simulink window,
select Simulation > Configuration Parameters, select the Real-Time
Workshop pane, select System target file ert.tlc, and click OK twice to

confirm the change.

4 Create a variant of rtwdemo_atomic.mdl that illustrates function code

without data separation.

a In the Simulink view of rtwdemo_atomic.mdl, right-click the SS1
subsystem and select Subsystem Parameters. In the Subsystem

Parameters dialog box, verify that

e Treat as atomic unit is checked

® User specified is selected as the value for the Real-Time
Workshop function name options parameter

® myfun is specified as the value for the Real-Time Workshop

function name parameter

b In the Subsystem Parameters dialog box,

i Select the value Function for the Real-Time Workshop system
code parameter. After this selection, additional parameters and

options will appear.

ii Select the value Use function name for the Real-Time Workshop
file name parameter. This selection is optional but simplifies the
later task of code comparison by causing the atomic subsystem
function code to be generated into the files myfun.c and myfun.h.

3-94

Nonvirtual Subsystem Modular Function Code Generation

Do not select the option Function with separate data. Click Apply to
apply the changes and click OK to exit the dialog box.

¢ Save this model variant to a personal work directory, for example,
d:/atomic/rtwdemo_atomici.mdl.

5 Create a variant of rtwdemo_atomic.mdl that illustrates function code
with data separation.

a In the Simulink view of rtwdemo_atomic1.mdl (or rtwdemo_atomic.mdl
with step 3 reapplied), right-click the SS1 subsystem and select
Subsystem Parameters. In the Subsystem Parameters dialog box,
verify that

* Treat as atomic unit is checked

® Function is selected for the Real-Time Workshop system code
parameter

® User specified is selected as the value for the Real-Time
Workshop function name options parameter

* myfun is specified as the value for the Real-Time Workshop
function name parameter

® Use function name is selected for the Real-Time Workshop file
name options parameter

b In the Subsystem Parameters dialog box, select the option Function
with separate data. Click Apply to apply the change and click OK to
exit the dialog box.

¢ Save this model variant, using a different name than the first variant, to a
personal work directory, for example, d: /atomic/rtwdemo_atomic2.mdl.

6 Generate code for each model, d:/atomic/rtwdemo_atomici1.mdl and
d:/atomic/rtwdemo_atomic2.mdl.

7 In the generated code directories, compare the model.c/.h and myfun.c/.h
files generated for the two models. (In this example, there are no significant
differences in the generated variants of ert_main.c, model private.h,
model types.h, or rtwtypes.h.)

3-95

3 Code Generation Options and Optimizations

H File Differences for Nonvirtual Subsystem Function Data
Separation

The differences between the H files generated for rtwdemo_atomic1.mdl and
rtwdemo_atomic2.mdl help illustrate the effect of selecting the Function
with separate data option for nonvirtual subsystems.

1 Selecting Function with separate data causes typedefs for subsystem
data to be generated in the myfun.h file for rtwdemo_atomic2:

/* Block signals for system '<Root>/SS1' */
typedef struct {

real T Integrator; /* '<81>/Integrator' */
} rtB_myfun;

/* Block states (auto storage) for system '<Root>/SS1' */
typedef struct {

real T Integrator_DSTATE; /* '<81>/Integrator' */
} rtDW_myfun;

By contrast, for rtwdemo_atomic1, typedefs for subsystem data belong to
the model and appear in rtwdemo_atomic1.h:

/* Block signals (auto storage) */
typedef struct {

real T Integrator; /* '<S1>/Integrator' */
} BlockIO_rtwdemo_atomici;

/* Block states (auto storage) for system '<Root>' */
typedef struct {

real_T Integrator_DSTATE; /* '<81>/Integrator' */
} D_Work_rtwdemo_atomici;

2 Selecting Function with separate data generates the following external
declarations in the myfun.h file for rtwdemo_atomic2:

/* Extern declarations of internal data for 'system '<Root>/SS1'' */
extern rtB_myfun rtwdemo_atomic2_myfunB;

extern rtDW_myfun rtwdemo_atomic2_myfunDW;

3-96

Nonvirtual Subsystem Modular Function Code Generation

extern void myfun_initialize(void);

By contrast, the generated code for rtwdemo_atomic1 contains model-level
external declarations for the subsystem’s BlockIO and D_Work data, in
rtwdemo_atomici.h

/* Block signals (auto storage) */
extern BlockIO_rtwdemo_atomici rtwdemo_atomic1_B;

/* Block states (auto storage) */
extern D_Work_rtwdemo_atomici rtwdemo_atomic1_DWork;

C File Differences for Nonvirtual Subsystem Function Data
Separation

The differences between the C files generated for rtwdemo_atomic1.mdl and
rtwdemo_atomic2.mdl illustrate the key effects of selecting the Function
with separate data option for nonvirtual subsystems.

1 Selecting Function with separate data causes a separate subsystem
initialize function, myfun_initialize, to be generated in the myfun.c
file for rtwdemo_atomic2:

void myfun_initialize(void) {

{
((real_T*)&rtwdemo_atomic2_myfunB.Integrator)[0] = 0.0;

}

rtwdemo_atomic2_myfunDW.Integrator_DSTATE = 0.0;

}

The subsystem initialize function in myfun.c is invoked by the model
initialize function in rtwdemo_atomic2.c:

/* Model initialize function */

void rtwdemo_atomic2_initialize(void)

{

/* Initialize subsystem data */
myfun_initialize();

3-97

3 Code Generation Options and Optimizations

3-98

By contrast, for rtwdemo_atomic1, subsystem data is initialized by the
model initialize function in rtwdemo_atomic1.c:

/* Model initialize function */

void rtwdemo_atomic1_initialize(void)

{
/* block I/0 */
{
((real_T*)&rtwdemo_atomic1_B.Integrator)[0] = 0.0;
}
/* states (dwork) */
rtwdemo_atomic1_DWork.Integrator_ DSTATE = 0.0;
}

2 Selecting Function with separate data generates the following
declarations in the myfun.c file for rtwdemo_atomic2:

/* Declare variables for internal data of system '<Root>/SS1' */
rtB_myfun rtwdemo_atomic2_myfunB;

rtDW_myfun rtwdemo_atomic2_myfunDW;

By contrast, the generated code for rtwdemo_atomic1 contains
model-level declarations for the subsystem’s BlockIO and D_Work data, in
rtwdemo_atomict.c

/* Block signals (auto storage) */
BlockIO_ rtwdemo_atomic1 rtwdemo_atomici_Bj;

/* Block states (auto storage) */
D _Work_rtwdemo_atomici1 rtwdemo_atomic1_DWork;

Nonvirtual Subsystem Modular Function Code Generation

3 Selecting Function with separate data generates identifier naming that

reflects the subsystem orientation of data items. Notice the references to
subsystem data in subsystem functions such as myfun and myfun_update
or in the model’s model step function. For example, compare this code
from myfun for rtwdemo_atomic2

/* DiscreteIntegrator: '<S1>/Integrator' */
rtwdemo_atomic2_myfunB.Integrator = rtwdemo_atomic2_myfunDW.Integrator_ DSTATE;

to the corresponding code from myfun for rtwdemo_atomici.

/* DiscreteIntegrator: '<S1>/Integrator' */
rtwdemo_atomic1_B.Integrator = rtwdemo_atomic1_DWork.Integrator_ DSTATE;

Nonvirtual Subsystem Modular Function Code
Limitations

The nonvirtual subsystem option Function with separate data has the
following limitations:

The Function with separate data option is available only in ERT-based
Simulink models (requires a license for Real-Time Workshop Embedded
Coder).

The nonvirtual subsystem to which the option is applied cannot have
multiple sample times or continuous sample times; that is, the subsystem
must be single-rate with a discrete sample time.

The nonvirtual subsystem cannot contain continuous states.
The nonvirtual subsystem cannot output function call signals.
The nonvirtual subsystem cannot contain non-inlined S-functions.

The generated files for the nonvirtual subsystem will reference model-wide
header files, such as model.h and model_private.h.

The Function with separate data option is incompatible with the
GRT compatible call interface option, located on the Real-Time
Workshop/Interface pane of the Configuration Parameters dialog box.
Selecting both will generate an error.

3-99

3 Code Generation Options and Optimizations

¢ The Function with separate data option is incompatible with the
Generate reusable code option (Real-Time Workshop/Interface pane).
Selecting both will generate an error.

e Although the model initialize function generated for a model containing
a nonvirtual subsystem that uses the Function with separate data
option may have a firstTime argument, the argument is not used. Thus,
you cannot call model initialize at a time greater than start time, for
example, to reset block states. To suppress inclusion of the firstTime flag
in the model_initialize function definition, set the model configuration
parameter IncludeERTFirstTime to off.

3-100

Controlling model_step Function Prototypes

Controlling model_step Function Prototypes

e “Overview” on page 3-101
® “Model Step Functions Dialog Box” on page 3-102
¢ “model_step Function Prototype Example” on page 3-105

¢ “Configuring a model_step Function Prototype Programmatically” on page
3-110

e “Sample M Script for Configuring a model_step Function Prototype” on
page 3-113

¢ “Configuring a Step Function Prototype for a Nonvirtual Subsystem” on
page 3-114

* “Verifying Generated Code for Customized Step Functions” on page 3-116

* “model_step Function Prototype Control Limitations” on page 3-116

Overview

Real-Time Workshop Embedded Coder provides a Configure Functions
button, located on the Interface pane of the Configuration Parameters dialog
box, that allows you to control the model step function prototype that is
generated for ERT-based Simulink models.

By default, the function prototype of an ERT-based model’s generated
model_step function resembles the following:

void model_step(void);

If you generate reusable, reentrant code for an ERT-based model, the model’s
root-level inputs and outputs, block states, parameters, and external outputs
are passed in to model_step using a function prototype that resembles the
following:

void model_step(inport_args, outport_args, BlockIO_arg, DWork_arg, RT_model_arg);

(For more detailed information about the default calling interface for the
model_step function, see the model_step reference page.)

3-101

3 Code Generation Options and Optimizations

3-102

The Configure Functions button on the Interface pane provides you
flexible control over the model step function prototype that is generated

for your model. Clicking Configure Functions launches a Model Step
Functions dialog box (see “Model Step Functions Dialog Box” on page 3-102).
Based on the Function specification value you specify for your model step
function (supported values include Default model-step function and
Model specific C prototype), you can preview and modify the function
prototype. Once you validate and apply your changes, you can generate code
based on your function prototype modifications.

For more information about using the Configure Functions button and
the Model Step Functions dialog box, see “model_step Function Prototype
Example” on page 3-105. See also the demo model rtwdemo_fcnprotoctrl,
which is preconfigured to demonstrate function prototype control.

Alternatively, you can use function prototype control functions to
programmatically control model step function prototypes. For more
information, see “Configuring a model_step Function Prototype
Programmatically” on page 3-110.

You can also control step function prototypes for nonvirtual subsystems,
if you generate subsystem code using right-click build. To launch

the Model Step Functions for Subsystem dialog box, use the function
RTW.configSubsystemBuild:

RTW.configSubsystemBuild('model/subsystem')
RTW.configSubsystemBuild(gcb)

Right-click building the subsystem will generate the step function according
to the customizations you make. For more information, see “Configuring a
Step Function Prototype for a Nonvirtual Subsystem” on page 3-114.

For limitations that apply, see “model_step Function Prototype Control
Limitations” on page 3-116.

Model Step Functions Dialog Box

Clicking the Configure Functions button on the Interface pane launches
the Model Step Functions dialog box. This dialog box is the starting point
for configuring the model step function prototype that is generated during

Controlling model_step Function Prototypes

code generation for ERT-based Simulink models. Based on the Function
specification value you select for your model step function (supported
values include Default model-step function and Model specific C
prototype), you can preview and modify the function prototype. Once you
validate and apply your changes, you can generate code based on your

function prototype modifications.

The figure below shows the Model Step Functions dialog box in the Default

model-step function view.

E! Model Step Functions: rtwdemo_counter

X

— Dezcription

Choosze a function specification for the model-step function.

— Set function zpecification and name

Function zpecification; | Default model-step function;l Function name; [iwdemo_counter_step

Generate the default model step function for Real-Time Workshop Embedded Coder.

— Function preview

rtwdema_caunter_step [|

r— Walidation

Yalidate |["invokes update diagram)

Infarmation: Last validation succeeded.

0K | Cancel | Help |

Apply

The Default model-step function view allows you to validate and preview
the predicted default model step function prototype. To validate the default
function prototype configuration against your model, click the Validate
button. If the validation succeeds, the predicted function prototype will be

displayed in the Function preview subpane.

Note You can not use the Default model-step function view to modify

the function prototype configuration.

3-103

3 Code Generation Options and Optimizations

3-104

Selecting Model specific C prototype for the Function specification
parameter displays the Model specific C prototype view of your

model step function. This view provides controls that you can use to
customize the function name, the order of arguments, and argument
attributes including name, passing mechanism, and type qualifier for each of

the model’s root-level I/O ports.

To begin configuring your function control prototype configuration,

click the

Get Default Configuration button. This activates the Configure function

arguments subpane, as shown below.

E! Model Step Functions: rtwdemo_counter

x|

— Description

Chooze a function specification far the model-step function.

&7

— Set function specification and name

Function specification:|ModeI specific C protatype ;I Function name: |ttwdema_counter_custom

This function specification supparts single rate and multirate single-tazking models. Press Get Default Configuration to
populate the initial argument configuration for the model step function.

Get Default Configuration |["in\t0kes update diagram)

— Configure function argument

Order | Port Hame | Port Type | Category Argument Name | Qualifier U
1| Irput |rprt ' alue || arg_Input none hd Down
2| Output Clutport Painter || arg_Cutput hohe hd

— Function previey

ttwdemao_counter_custom [arg_nput, * arg_Output |

— Walidation

Walidate | [*invokes update diagram)

Infarmation: Press Validate to confirm the specification is walid far thiz model.

QK. | Cancel | Help Apply

In the Configure function arguments subpane:

¢ Category specifies how an argument is passed in or out from the
customized step function, either by copying a value (Value) or by a pointer

to a memory space (Pointer).

Controlling model_step Function Prototypes

* Qualifier (optional), specifies a const type qualifier for a function
argument. The possible values are none, const (value), const* (value
referenced by the pointer), and const*const (value referenced by the
pointer and the pointer itself).

The Function preview subpane provides a preview of how your function
prototype will be interpreted in generated code. The preview is updated
dynamically as you make modifications.

An argument foo whose Category is Pointer will be previewed as * foo.
If its Category is Value, it will be previewed as foo. Notice that argument
types and qualifiers are not represented in the Function preview subpane.

model_step Function Prototype Example

The following procedure demonstrates how to use the Configure Functions
button on the Interface pane of the Configuration Parameters dialog box

to control the model step function prototype that is generated for your
Simulink model.

1 Open MATLAB and launch rtwdemo_counter.mdl using the MATLAB
command rtwdemo_counter.

2 In the rtwdemo_counter display, double-click the button Generate Code
Using Real-Time Workshop Embedded Coder (double-click). This
button generates code for an ERT-based version of rtwdemo_counter.mdl.
The code generation report for rtwdemo_counter is displayed.

3 In the code generation report, click the link for rtwdemo_counter.c. In the
rtwdemo_counter.c code display, locate and examine the generated code
for the function rtwdemo_counter_step, beginning with

/* Model step function */
void rtwdemo_counter_step(void)

{
}

You can close the report window after you have examined the generated
code. Optionally, you can save rtwdemo_counter.c and any other generated
files of interest to a different location for later comparison.

3-105

3 Code Generation Options and Optimizations

4 From the Simulink window for rtwdemo_counter, launch the Configuration
Parameters dialog box. Go to the Interface pane and launch the Model
Step Functions dialog box by clicking the Configure Functions button.

5 In the initial (Default model-step funtion) view of the Model Step
Functions dialog box, click the Validate button to validate and preview the
default function prototype for the rtwdemo_counter_step function. The
function prototype arguments displayed under Function preview should
correspond to the default prototype generated in step 3.

E! Model Step Functions: rtwdemo_counter x|

— Dezcription

Choosge a function specification for the model-step function.

— Set function specification and name

Function specification: {Default model-step funclion;l Function name: |wdero_counter_step

Generate the default model step function for Real-Time Workshop Embedded Coder,

— Function preview

rtwdemo_counter_step []

r— Walidation

Walidate |["inv0kes update diagram)

Information: Last validation succeeded.

1] | Cancel | Help | Apply |

6 In the Model Step Functions dialog box, set Function specification to
Model specific C prototype. Making this selection switches the dialog
box from the Default model-step function view to the Model specific
C prototype view.

3-106

Controlling model_step Function Prototypes

E! Model Step Functions: rtwdemo_counter ﬂ

— Dezcription

Choosze a function specification for the madel-step function.

— Set funchion zpecification and name

Function specification: ||gl fic C protatype Function name: | rtwderno_counter_custanm

Thiz function specification supportz single rate and multirate zingle-tasking modelz. Prezs Get Default
Configuration to populate the initial argument configuration for the model step function.

Get Default Canfiguration | [*invokes update diagrar)

— Function preview

rtwdemo_counter_custom |]

r— Walidation

Yalidate |["inv0kes update diagram)

Information:; Press Validate to confirm the specification iz valid for thiz modsl,

0K | Cancel | Help | Apply |

7 In the Model specific C prototype view, click the Get Default
Configuration button to activate the Configure function arguments
subpane.

3-107

3 Code Generation Options and Optimizations

=] Model Step Functions: riwdemo_counter |

— Description

&7

Chooze a function specification far the model-step function.

— Set function specification and name

Function specification:|ModeI specific C protatype ;I Function name: |ttwdema_counter_custom

This function specification supparts single rate and multirate single-tazking models. Press Get Default Configuration to
populate the initial argument configuration for the model step function.

Get Default Configuration |["in\t0kes update diagram)

— Configure function argument

Order | Port Hame | Port Type | Category Argument Name | Qualifier U
1| Irput |rprt ' alue || arg_Input none hd Down
2| Output Clutport Painter || arg_Cutput hohe hd

— Function previey

ttwdemao_counter_custom [arg_nput, * arg_Output |

— Walidation

Walidate | [*invokes update diagram)

Infarmation: Press Validate to confirm the specification is walid far thiz model.

QK. | Cancel | Help | Apply |

8 In the Configure function arguments subpane, in the row for the
Input argument, change the value of Category from Value to Pointer
and change the value of Qualifier from none to const *. The preview is
updated to reflect your changes. Click the Validate button to validate the
modified function prototype.

3-108

Controlling model_step Function Prototypes

=] Model Step Functions: riwdemo_counter |

— Description

Chooze a function specification far the model-step function.

— Set function specification and name

Function specification:|ModeI specific C protatype ;I Function name: |ttwdema_counter_custom

This function specification supparts single rate and multirate single-tazking models. Press Get Default Configuration to
populate the initial argument configuration for the model step function.

Get Default Configuration |["in\t0kes update diagram)

— Configure function argument

Order | Port Mame Port Type | Category Argument Mame Qualifier U
1| Irpuat | picrt Painter || arg_Input const * | Down
2| Output Clutport Painter || arg_Cutput hohe j

— Function previey

ttwdemo_counter_custom [* arg_lnput, * arg_Output |

— Walidation

Walidate | [*invokes update diagram)

Information: Last walidation succeeded.

QK. | Cancel | Help | Apply |

9 Click OK to exit the Model Step Functions dialog box and then generate
code for the model (for example, by using Ctrl/B or the Real-Time Workshop
Build button). When the build completes, the code generation report for
rtwdemo_counter will be displayed.

10 In the code generation report, click the link for rtwdemo_counter.c. In the
rtwdemo_counter.c code display, locate and examine the generated code
for the function rtwdemo_counter_step, beginning with

/* Model step function */
void rtwdemo_counter_step(void)

{

3-109

3 Code Generation Options and Optimizations

3-110

Note In the current implementation, the rtwdemo_counter_step function
prototype itself is unchanged. For more information, see “model_step
Function Prototype Control Limitations” on page 3-116.

Near the end of the same code display, locate and examine the generated
code for the function rtwdemo_counter_custom, beginning with

/* Customized model step function */
void rtwdemo_counter_custom(const int32_T *arg_Input, int32_T *arg_Output)

{

Verify that the generated code is consistent with the function prototype
modifications that you specified using the Model Step Functions dialog box.

Configuring a model_step Function Prototype
Programmatically

You can use the function prototype control functions (listed below in Function
Prototype Control Functions on page 3-112), to programmatically control
model_step function prototypes. Typical uses of the listed functions include:

¢ Create and validate a new function prototype

a Create a model-specific C function prototype with obj =
RTW.ModelSpecificCPrototype, where obj returns a handle to an
newly-created, empty function prototype.

b Add argument configuration information for your model ports using
addArgConf.

¢ Attach the function prototype to your loaded ERT-based Simulink model
using attachToModel.

d Validate the function prototype using runvalidation.

e Ifvalidation succeeds, save your model and then generate code using
rtwbuild.

¢ Modify and validate an existing function prototype

Controlling model_step Function Prototypes

a Get the handle to an existing model-specific C function prototype that
is attached to your loaded ERT-based Simulink model with obj =
RTW.getFunctionSpecification(modelName), where modelName is a
string specifying the name of a loaded ERT-based Simulink model, and
obj returns a handle to a function prototype attached to the specified
model.

You can use other function prototype control functions on the returned
handle only if the test isa(obj, 'RTW.ModelSpecificCPrototype')
returns 1. If the model does not have a function prototype configuration,
the function returns []. If the function returns a handle to an object of
type RTW.FcnDefault, you cannot modify the existing function prototype.

b Use the Get and Set functions listed in Function Prototype Control
Functions on page 3-112 to test and/or reset such items as the function
name, argument names, argument positions, argument categories, and
argument type qualifiers.

¢ Validate the function prototype using runvalidation.

d If validation succeeds, save your model and then generate code using
rtwbuild.

Create and validate a new function prototype, starting with default
configuration information from your Simulink model

a Create a model-specific C function prototype using obj =
RTW.ModelSpecificCPrototype, where obj returns a handle to an
newly-created, empty function prototype.

b Attach the function prototype to your loaded ERT-based Simulink model
using attachToModel.

¢ Get default configuration information from your model using
getDefaultConf.

d Use the Get and Set functions listed in Function Prototype Control
Functions on page 3-112 to test and/or reset such items as the function
name, argument names, argument positions, argument categories, and
argument type qualifiers.

e Validate the function prototype using runvalidation.

f Ifvalidation succeeds, save your model and then generate code using
rtwbuild.

3-111

3 Code Generation Options and Optimizations

Note You should not use the same model-specific C function prototype object
across multiple models. If you do, changes that you make to the step function
prototype configuration in one model will be propagated to other models,
which is usually not desirable.

Function Prototype Control Functions

Function
addArgConf

attachToModel

getArgCategory

getArgName

getArgPosition

getArgQualifier

getDefaultConf

getFunctionName

getNumArgs

runValidation

setArgCategory

setArgName

3-112

Description

Add argument configuration information for Simulink model
port to model-specific C function prototype

Attach model-specific C function prototype to loaded
ERT-based Simulink model

Get argument category for Simulink model port from
model-specific C function prototype

Get argument name for Simulink model port from
model-specific C function prototype

Get argument position for Simulink model port from
model-specific C function prototype

Get argument type qualifier for Simulink model port from
model-specific C function prototype

Get default configuration information for model-specific
C function prototype from Simulink model to which it is
attached

Get function name from model-specific C function prototype

Get number of function arguments from model-specific C
function prototype

Validate model-specific C function prototype against
Simulink model to which it is attached

Set argument category for Simulink model port in
model-specific C function prototype

Set argument name for Simulink model port in model-specific
C function prototype

Controlling model_step Function Prototypes

Function Prototype Control Functions (Continued)

Function Description

setArgPosition Set argument position for Simulink model port in
model-specific C function prototype

setArgQualifier Set argument type qualifier for Simulink model port in
model-specific C function prototype

setFunctionName Set function name in model-specific C function prototype

Sample M Script for Configuring a model_step
Function Prototype

The following sample M script launches the demo model rtwdemo_counter
and performs these steps:

1 Calls set_param to select ert.tlc as the model’s system target file.

2 Invokes RTW.ModelSpecificCPrototype to create a new model-specific
C function prototype.

3 Calls addArgConf to add argument configuration information for the
model’s Input and Output ports.

4 Calls attachToModel to attach the function prototype to the loaded model.

5 Further modifies the function prototype using setFunctionName,
setArgPosition, setArgCategory, setArgName, and setArgQualifier.

6 Calls runvalidation to validate the function prototype against the model
to which it is attached.

7 If validation succeeds, calls rtwbuild to invoke the Real-Time Workshop
build procedure and generate code.

rtwdemo_counter
set_param(gcs, 'SystemTargetFile', 'ert.tlc')

%% Create a model-specific C function prototype
a=RTW.ModelSpecificCPrototype

3-113

3 Code Generation Options and Optimizations

%% Add argument configuration information for Input and Output ports
addArgConf(a, 'Input', 'Pointer', 'inputArg', 'const *')
addArgConf(a, 'Output', 'Pointer', 'outputArg', 'none')

%% Attach the model-specific C function prototype to the model
attachToModel(a,gcs)

%% Rename the step function and change some argument attributes
setFunctionName(a, 'StepFunction')

setArgPosition(a, 'Output',1)

setArgCategory(a, 'Input', 'Value')
setArgName(a, 'Input', 'InputArg')
setArgQualifier(a, 'Input', 'none')

%% Validate the function prototype against the model
[status,message]l=runValidation(a)

%% 1f validation succeeded, generate code and build
if status

rtwbuild(gcs)
end

Configuring a Step Function Prototype for a
Nonvirtual Subsystem
You can control step function prototypes for nonvirtual subsystems in

ERT-based Simulink models, if you generate subsystem code using right-click
build. Function prototype control is supported for the following types of
nonvirtual subsystems:

® Triggered subsystems

¢ Enabled subsytems

¢ Enabled trigger subsystems

® While subsystems

® For subsystems

e Stateflow subsystems if atomic

3-114

Controlling model_step Function Prototypes

¢ Embedded MATLAB subsystems if atomic

To launch the Model Step Functions for subsystem dialog box, open the
containing model and invoke the function RTW.configSubsystemBuild:

RTW.configSubsystemBuild ('model/subsystem')
RTW.configSubsystemBuild(gch)

You supply the full block path to the subsystem, such as
'rtwdemo_counter/Amplifier', or simply select the subsystem you want to
configure and pass the MATLAB function gcb, which returns the full block
path of the current Simulink block.

The Model Step Functions dialog box for modifying the Model-specific
C prototype function for the subsystem rtwdemo_counter/Amplifier is
displayed as follows:

E! Model Step Functions for subsystem: Amplifier ﬂ

— Description

Chooze a function specification far the model-step function.

— Set function specification and name

Furction specification:lModel zpecific C protatype LI Function name: [Amplifier_custom

This function specification supportz single rate and multirate single-tazking models. Press Get Default Configuration to
populate the initial argument configuration for the model step function.

Get Default Configuration |["inv0kes update diagram)

— Configure function argument

Order | Port Name | Port Type | Category Argument Name | Qualifier)<}
1|In |rprt Y alue |[arg_In rore hd Down
2| Trigger Inport Yalue || arg_Trigger nane hd
3 0ut Clutport Painter o |[arg_Qut hohe hd

— Function preview

Amplifier_custom [arg_In, arg_Trigger, * arg_Out |

— Yalidation

Walidate |["inv0kes update diagram)

Infarmation: Press Validate to confirm the specification is walid for thiz model.

QK. Cancel Help Apply

3-115

3 Code Generation Options and Optimizations

Right-click building the subsystem will generate the step function according
to the customizations you make.

Verifying Generated Code for Customized Step
Functions

You can use software-in-the-loop (SIL) testing to verify the generated code for
your customized step functions. This involves generating an ERT S-function
wrapper for your generated code, which then can be integrated into a
Simulink model to verify that the generated code provides the same result
as the original model or nonvirtual subsystem. For more information, see
“Automatic S-Function Wrapper Generation” on page 3-69 and “Verifying
Generated Code with Software-in-the-loop Testing” on page 3-73.

model_step Function Prototype Control Limitations

The following limitations apply to the model step function prototype control
capability:

¢ Function prototype control currently is supported only for step functions
generated from a Simulink model.

¢ The current implementation of function prototype control does not modify
the model step function directly, but instead generates a customized
wrapper function, which calls the underlying default step function. The
wrapper function copies your specified inputs to the appropriate global
input locations, calls the step function, and then copies or returns the
global output values as specified in your modified function prototype.

¢ The Generate reusable code option (on the Interface pane of the
Configuration Parameters dialog box) must be cleared.

¢ The Single output/update function option (on the Interface pane of the
Configuration Parameters dialog box) must be selected.

¢ Function prototype control does not support multitasking models. Multirate
models are supported, but must be configured as single-tasking.

¢ Root-level inports and outports cannot use custom storage classes other
than Auto.

¢ The generated code for a parent model does not call the function prototype
control step functions generated from referenced models.

3-116

Controlling model_step Function Prototypes

¢ Function prototype control should not be used with the static ert_main.c
provided by The MathWorks. Specifying a function prototype control
configuration other than the default creates a mismatch between the
generated code and the default static ert_main.c.

3-117

3 Code Generation Options and Optimizations

Creating and Using Host-Based Shared Libraries

3-118

® “Overview” on page 3-118
® “Generating a Shared Library Version of Your Model Code” on page 3-119

® “Creating Application Code to Load and Use Your Shared Library File” on
page 3-119

¢ “Host-Based Shared Library Limitations” on page 3-124

Overview

Real-Time Workshop Embedded Coder provides an ERT target,
ert_shrlib.tlc, for generating a host-based shared library from your
Simulink model. Selecting this target allows you to generate a shared library
version of your model code that is appropriate for your host platform, either
a Windows dynamic link library (.d11) file or a UNIX shared object (.so)
file. This feature can be used to package your source code securely for easy
distribution and shared use. The generated .d11 or .so file is shareable
among different applications and upgradeable without having to recompile
the applications that use it.

Code generation for the ert_shrlib.tlc target exports

e Variables and signals of type ExportedGlobal as data
¢ Real-time model structure (model M) as data

¢ Functions essential to executing your model code
To view a list of symbols contained in a generated shared library file, you can

®¢ On Windows, use the Dependency Walker utility, downloadable from
http://www.dependencywalker.com

® On UNIX, use nm -D model.so
To generate and use a host-based shared library, you

1 Generate a shared library version of your model code

2 Create application code to load and use your shared library file

http://www.dependencywalker.com

Creating and Using Host-Based Shared Libraries

Generating a Shared Library Version of Your Model
Code

This section summarizes the steps needed to generate a shared library
version of your model code.

1 To configure your model code for shared use by applications, open your
model and select the ert_shrlib.tlc target on the Real-Time Workshop
pane of the Configuration Parameters dialog box. Click OK.

x
Syztem target file: Description:
ert. tlc Real-Time Workshop Enbedded Coder (no auto configuration) -
ert. tle Real-Time Workshop Emnbedded Coder {auto configures for optimized fix
ert . tlc Real-Tine Workshop Embedded Coder (auto configures for optimized flo
ert. tlc Visual CsC++ Project Hakefile only for the REeal-Time Workshop Embedd

3 Real-Time Workshop Enbedded Coder (host
grt.tlc Generic Real-Tine Target

grt.tlc Visual CrC++ Project Hakefile only for the "grt" target
grt_mnalloc.tlc Generic Real-Tine Target with dynamic nemory allocation
<

Full name: E:\matlabhitwcherthert_shrlib.tie

Template make file: ert_default_tmf
Make command: make_rtw

ok I Cancel | Help | Apply |

red library target)

o

Selecting the ert_shrlib.tlc target causes the build process to generate
a shared library version of your model code into your current working
directory. The selection does not change the code that is generated for
your model.

2 Build the model.

3 After the build completes, you can examine the generated code in the
model subdirectory, and the .d11 file or . so file that has been generated
into your current directory.

Creating Application Code to Load and Use Your
Shared Library File

To illustrate how application code can load an ERT shared library file and
access its functions and data, The MathWorks provides the demo model
rtwdemo_shrlib. Clicking the blue button in the demo model runs a script
that:

3-119

3 Code Generation Options and Optimizations

3-120

1 Builds a shared library file from the model (for example,
rtwdemo_shrlib_win32.d11 on 32-bit Windows)

2 Compiles and links an example application, rtwdemo_shrlib_app, that will
load and use the shared library file

3 Executes the example application

Note It is recommended that you change directory to a new or empty
directory before running the rtwdemo_shrlib script.

The demo model uses the following example application files, which are
located in matlabroot/toolbox/rtw/rtwdemos/shrlib_demo.

File Description
rtwdemo_shrlib _app.h Example application header file
rtwdemo_shrlib_app.c Example application that loads and uses

the shared library file generated for the
demo model

run_rtwdemo_shrlib app.m Script to compile, link, and execute the
example application

You can view each of these files by clicking white buttons in the demo model
window. Additionally, running the script places the relevant source and
generated code files in your current directory. The files can be used as
templates for writing application code for your own ERT shared library files.

The following sections present key excerpts of the example application files.

Example Application Header File

The example application header file rtwdemo_shrlib_app.h contains type
declarations for the demo model’s external input and output.

#ifndef _APP_MAIN_HEADER_
#define _APP_MAIN_HEADER_

Creating and Using Host-Based Shared Libraries

typedef struct {
int32_T Input;
} Externallnputs_rtwdemo_shrlib;

typedef struct {
int32_T Output;
} ExternalOutputs_rtwdemo_shrlib;

#endif /* APP_MAIN_HEADER */

Example Application C Code

The example application rtwdemo_shrlib_app.c includes the following code
for dynamically loading the shared library file. Notice that, depending on
platform, the code invokes Windows or UNIX library commands.

#if (defined(_WIN32)||defined(_WIN64)) /* WINDOWS */
#include <windows.h>

#define GETSYMBOLADDR GetProcAddress

#define LOADLIB LoadLibrary

#define CLOSELIB FreeLibrary

#else /* UNIX */

#include <dlfcn.h>

#define GETSYMBOLADDR dlsym
#define LOADLIB dlopen
#define CLOSELIB dlclose

#endif

int main()

{
void* handlelLib;

#if defined(_WIN64)

handleLib = LOADLIB("./rtwdemo_shrlib_win6é4.d11");
#else
#if defined(_WIN32)

handleLib = LOADLIB("./rtwdemo_shrlib_win32.d11");
#else /* UNIX */

3-121

3 Code Generation Options and Optimizations

handleLib = LOADLIB("./rtwdemo_shrlib.so", RTLD_LAZY);
#endif
#endif

return(CLOSELIB(handlelLib));

The following code excerpt shows how the C application accesses the demo
model’s exported data and functions. Notice the hooks for adding user-defined
initialization, step, and termination code.

int32_T i;

void (*mdl_initialize) (boolean_T);
void (*mdl_step)(void);
void (*mdl_terminate) (void);

Externallnputs_rtwdemo_shrlib (*mdl_Uptr);
ExternalOutputs_rtwdemo_shrlib (*mdl_Yptr);

uint8_ T (*sum_outptr);

#if (defined(LCCDLL)||defined (BORLANDCDLL))
/* Exported symbols contain leading underscores when DLL is linked with
LCC or BORLANDC */

mdl_initialize =(void(*)(boolean_T))GETSYMBOLADDR (handleLib ,
"_rtwdemo_shrlib_initialize");

mdl_step =(void(*) (void))GETSYMBOLADDR (handleLib ,
"_rtwdemo_shrlib_step");

mdl_terminate =(void(*)(void))GETSYMBOLADDR (handleLib ,
"_rtwdemo_shrlib_terminate");

mdl_Uptr =(Externallnputs_rtwdemo_shrlib*)GETSYMBOLADDR (handlelLib
"_rtwdemo_shrlib_U");
mdl_Yptr =(ExternalOutputs_rtwdemo_shrlib*)GETSYMBOLADDR (handlelLib ,
"_rtwdemo_shrlib_Y");
sum_outptr =(uint8_T*)GETSYMBOLADDR (handleLib , "_sum_out");
#else

mdl_initialize =(void(*)(boolean_T))GETSYMBOLADDR (handlelLib ,
"rtwdemo_shrlib_initialize");
mdl_step =(void(*)(void))GETSYMBOLADDR (handleLib ,

3-122

Creating and Using Host-Based Shared Libraries

"rtwdemo_shrlib_step");
mdl_terminate =(void(*)(void))GETSYMBOLADDR (handleLib ,
"rtwdemo_shrlib_terminate");

mdl_Uptr =(Externallnputs_rtwdemo_shrlib*)GETSYMBOLADDR (handlelLib
"rtwdemo_shrlib_U");
mdl_Yptr =(ExternalOutputs_rtwdemo_shrlib*)GETSYMBOLADDR (handleLib ,
"rtwdemo_shrlib_Y");
sum_outptr =(uint8_T*)GETSYMBOLADDR (handleLib , "sum_out");
#endif

if ((mdl_initialize && mdl_step && mdl_terminate && mdl_Uptr && mdl_Yptr &&
sum_outptr)) {
* === user application initialization function === *
mdl_initialize(1);
/* insert other user defined application initialization code here */

/* === user application step function === */
for(i=0;i<=12;1i++){
mdl_Uptr->Input = i;
mdl_step();
printf("Counter out(sum_out): %d\tAmplifier in(Input): %d\tout(Output): %d\n",
*sum_outptr, i, mdl_Yptr->Output);
/* insert other user defined application step function code here */

/* === user application terminate function === */
mdl_terminate();
/* insert other user defined application termination code here */

}

else {
printf("Cannot locate the specified reference(s) in the shared library.\n");
return(-1);

}

Example Application M Script

The application script run_rtwdemo_shrlib_app.m loads and rebuilds the
demo model, and then compiles, links, and executes the demo model’s
shared library target file. You can view the script source file by opening
rtwdemo_shrlib and clicking the appropriate white button. The script

3-123

3 Code Generation Options and Optimizations

3-124

constructs platform-dependent command strings for compilation, linking,
and execution that may apply to your development environment. To run the
script, click the blue button.

Host-Based Shared Library Limitations
The following limitations apply to using ERT host-based shared libraries:

® Code generation for the ert_shrlib.tlc target exports only the following
as data:

= Variables and signals of type ExportedGlobal
= Real-time model structure (model M)

® On Windows systems, the ert_shrlib target by default does not generate
or retain the .1ib file for implicit linking (explicit linking is preferred for
portability).

You can change the default behavior and the retain . 1ib file by modifying
the corresponding template makefile (TMF). If you do this, be aware

that the generated model .h file will need a small modification to be used
together with the generated ert_main.c for implicit linking. For example, if
you are using Visual C++, you will need to declare __declspec(dllimport)
in front of all data to be imported implicitly from the shared library file.

Custom Storage Classes

Introduction to Custom Storage
Classes (p. 4-3)

Custom Storage Classes and
Simulink Data Objects (p. 4-5)

Designing Custom Storage Classes
(p. 4-15)

Creating Packages with CSC
Definitions (p. 4-31)

Defining Advanced Custom Storage
Class Types (p. 4-35)

Overview of how Real-Time
Workshop Embedded Coder’s custom
storage classes (CSCs) extend your
control over the representation of
data in an embedded algorithm.

Relationship between custom storage
classes and Simulink data class
packages and objects; predefined
custom storage classes for signal and
parameter objects; how to set custom
storage class properties of data
objects for use in code generation;
code generation example using
signal objects with custom storage
classes.

Using the Custom Storage Class
Designer to implement your own
custom storage classes.

Using the Simulink Data Class
Designer to create data object
packages associated with custom
storage classes.

Defining custom storage classes from
scratch, including associated TLC
code generation implementation;
using advanced mode of the Custom
Storage Class Designer.

4 cusiom Storage Classes

GetSet Custom Storage Class for
Data Store Memory (p. 4-39)

Setting Code Generation Options for
Custom Storage Classes (p. 4-42)

Custom Storage Class Limitations
(p. 4-43)

Older Custom Storage Classes (Prior
to Release 14) (p. 4-44)

Special storage class for use with
Data Store Memory blocks.

Setting Configuration Parameters
dialog box options correctly for code
generation with CSCs.

Describes limitations that apply to
custom storage classes, including
their use in models that use model
referencing.

Compatibility information on custom
storage classes provided in versions
of Real-Time Workshop Embedded
Coder prior to Version 4.0 (MATLAB
Release 14).

Introduction to Custom Storage Classes

Introduction to Custom Storage Classes

In Real-Time Workshop, the storage class specification of a signal, tunable
parameter, block state, or data object specifies how that entity is declared,
stored, and represented in generated code.

Note that in the context of Real-Time Workshop, the term “storage class” is not
synonymous with the term “storage class specifier”, as used in the C language.

Real-Time Workshop defines built-in storage classes for use with all targets.
Examples of built-in storage classes are Auto, ExportedGlobal, and
ImportedExtern. These storage classes provide limited control over the form
of the code generated for references to the data. For example, data of storage
class Auto is typically declared and accessed as an element of a structure,
while data of storage class ExportedGlobal is declared and accessed as
unstructured global variables. Built-in storage classes are discussed in detail
in the “Working with Data Structures” section of the Real-Time Workshop
documentation.

The built-in storage classes are suitable for many applications, but embedded
system designers often require greater control over the representation of
data. For example, you may need to

¢ Define structures for storage of parameter or signal data.

¢ Conserve memory by storing Boolean data in bit fields.

¢ Integrate generated code with legacy software whose interfaces cannot
be modified.

® Generate data structures and definitions that comply with your
organization’s software engineering guidelines for safety-critical code.

Real-Time Workshop Embedded Coder’s custom storage classes (CSCs)
provide extended control over the constructs required to represent data in an
embedded algorithm. CSCs extend the built-in storage classes provided by
Real-Time Workshop. Real-Time Workshop Embedded Coder provides

® A set of ready-to-use CSCs. These CSCs are designed to be useful in code
generation for embedded systems development. CSC functionality is

4 cusiom Storage Classes

integrated into the Simulink.Signal and Simulink.Parameter classes;
you do not need to use special object classes to generate code with CSCs.

If you are unfamiliar with the Simulink.Signal and Simulink.Parameter
classes and objects, you should read the “Simulink Data Objects and Code
Generation” section of the Real-Time Workshop documentation.

® The Custom Storage Class Designer (cscdesigner) tool. This tool lets
you define additional CSCs that are tailored to your code generation
requirements. The Custom Storage Class Designer provides a graphical
user interface that lets you implement CSCs quickly and easily. You
can use your CSCs in code generation immediately, without any Target
Language Compiler (TLC) or other programming.

¢ The Simulink Data Class Designer. This chapter describes how to use
the Simulink Data Class Designer to create a data object package and
associate your own custom CSC definitions with classes contained in the
package. For a general description of the Simulink Data Class Designer,
see the Simulink documentation.

The demo rtwdemo_importstruct shows how the Custom Storage Class
capabilities work together. Using the techniques shown in the demo, you can
specify and change the values of any number of parameters with a single

C statement. The statement assigns to a pointer variable the address of a
structure that defines the desired values. Assigning the address of a different
structure changes all the values at once.

Custom Storage Classes and Simulink Data Obijects

Custom Storage Classes and Simulink Data Objects

® “Overview” on page 4-5

¢ “Predefined CSCs” on page 4-6

e “Setting Custom Storage Class Properties” on page 4-9
® “Generating Code with CSCs” on page 4-10

Overview

CSCs are associated with Simulink data class packages (such as the Simulink
package) and with classes within packages (such as the Simulink.Parameter
and Simulink.Signal classes). The custom storage classes associated with

a package are defined by a CSC registration file.

A CSC registration file is provided for the Simulink package. This
registration file provides predefined CSCs for use with the Simulink.Signal
and Simulink.Parameter classes (and with subclasses derived from these
classes). The predefined CSCs are sufficient for a wide variety of applications.

If you use only predefined CSCs, you do not need to be concerned with CSC
registration files. If you want to customize or extend the predefined CSCs,
or create CSCs for use with data class packages other than the Simulink
package, you can by using the Custom Storage Class Designer. The Custom
Storage Class Designer is described in “Designing Custom Storage Classes”
on page 4-15.

The next three sections discuss topics related to predefined CSCs and their
use in code generation:

¢ “Predefined CSCs” on page 4-6 discusses the ready-to-use CSCs provided
for parameter and signal objects.

e “Setting Custom Storage Class Properties” on page 4-9 demonstrates how
to configure the CSC-related properties of parameter and signal objects.

® “Generating Code with CSCs” on page 4-10 guides you through the steps
required to generate code using CSCs, using signal objects as an example.

4 cusiom Storage Classes

Predefined CSCs

The RTWInfo properties of parameter and signal objects are used by Real-Time
Workshop during code generation. These properties let you assign storage
classes to the objects, thereby controlling how the generated code stores and
represents signals and parameters.

The RTWInfo field of the Simulink.Signal and Simulink.Parameter classes
(and of any subclasses derived from these classes) contains two properties
that support use of CSCs in code generation:

® CustomStorageClass: To assign a custom storage class to a signal or
parameter object, you set the RTWInfo.CustomStorageClass property to
one of the available CSC names and RTWInfo.StorageClass to Custom.
Summary of Predefined Simulink CSCs for Signal and Parameter Objects
on page 4-7 lists the predefined set of CSCs provided by Real-Time
Workshop Embedded Coder.

® CustomAttributes: Some CSCs have instance-specific properties
that define attributes of individual objects (or instances) of that
class. The RTWInfo.CustomAttributes property lets you define these
attributes. For example, you can pack signal objects of class Struct
into different data structures in the generated code by setting the
RTWInfo.CustomAttributes.StructName property for each object.
Summary of Instance-Specific Properties for CSCs on page 4-8 lists
instance-specific properties for the predefined set of CSCs provided by
Real-Time Workshop Embedded Coder.

Note that some CSCs are valid for parameter objects but not signal objects
and vice versa (even though they are not defined in predefined CSCs). For
example, you can assign the storage class Const to a parameter object. This
storage class is not valid for signals, because, in general, signal data is not
constant. Summary of Predefined Simulink CSCs for Signal and Parameter
Objects on page 4-7 indicates whether each class is valid for parameter or
signal objects.

Custom Storage Classes and Simulink Data Obijects

Summary of Predefined Simulink CSCs for Signal and Parameter Objects

Class Name
(Enumerated)

Available for
Signals

Available for
Parameters

Purpose

BitField

Y

Y

Generate a struct declaration
that embeds Boolean data in
named bit fields.

Const

Generate a constant
declaration with the const
type qualifier.

ConstVolatile

Generate declaration of volatile
constant with the const
volatile type qualifier.

Default

Default is a placeholder

CSC that the code

generator assigns to the
RTWInfo.CustomStorageClass
property of signal and
parameter objects when

they are created. You cannot
edit the default CSC definition.

Define

z

s

Generate #define directive.

ExportToFile

Generate header (.h) file, with
user-specified name, containing
global variable declarations.

ImportFromFile

Generate directives to include
predefined header files
containing global variable
declarations.

Struct

Generate a struct declaration
encapsulating parameter or
signal object data.

Volatile

Use volatile type qualifier in
declaration.

4-7

4 cusiom Storage Classes

Summary of Instance-Specific Properties for CSCs

Class Name
(Enumerated) Instance-Specific Property Purpose

BitField CustomAttributes.StructName Name of the bitfield struct into
which the code generator packs the
object’s Boolean data.

ExportToFile CustomAttributes.HeaderFile Name of header (.h) file that
contains exported variable
declarations and export directives
for the object.

ImportFromFile CustomAttributes.HeaderFile Name of header (.h) file containing
global variable declarations the code
generator imports for the object.

Struct CustomAttributes.StructName Name of the struct into which the
code generator packs the object’s
data.

Custom Storage Classes and Simulink Data Obijects

Setting Custom Storage Class Properties

You can set the CustomStorageClass and CustomAttributes properties (if
applicable) of signal and parameter objects by using the data object dialog box.
This dialog box appears in the right pane of the Model Explorer. Alternatively,
you can launch the dialog box independently by right-clicking the relevant
object in center pane of the Model Explorer and choosing Properties. The
following figure shows a Model Explorer properties view of a signal object, aa.
The Storage class menu sets the RTWInfo.CustomStorageClass property for
the object. In this case the Storage class field specifies the custom storage
class Struct. The Struct storage class has the instance-specific property
Struct name (RTWInfo.CustomAttributes.StructName). This property is
set to mySignals.

x
[rata type: lh Units: I—
Dimensions: I‘I— Complexity: Ih
Sample time: I‘I— Sample mode: Ih
Minimurm: — |-Inf I awimurn: Inf
Initial waluie: l—

—Code generation option

Storage class:l Struct [Custom) LI

Custom attribu

’V Struct name: ImySignaIs

Alias: I

Description:

Ok I Lancel |

You can also set these properties with MATLAB commands, for example:

aa = Simulink.Signal;

aa.RTWInfo.StorageClass = 'Custom';
aa.RTWInfo.CustomStorageClass = 'Struct';
aa.RTWInfo.CustomAttributes.StructName = 'mySignals';

4 cusiom Storage Classes

When setting CSC-related RTWInfo properties with MATLAB commands,
make sure that the RTWInfo.StorageClass property is set to Custom. If
you set this property to another value, the custom storage properties are
ignored. If you set RTWInfo.customStorageClass without first setting
RTWinfo.StorageClass to Custom, the code generator displays a warning
at the MATLAB command line. If you configure these properties with the
Simulink Model Explorer, RTWInfo.StorageClass is automatically set to
the correct value.

In the generated code, storage for the signal aa is allocated within a struct
named mySignals. This is demonstrated in the next section, “Generating
Code with CSCs” on page 4-10.

Generating Code with CSCs

This section presents a simple example of code generation with CSCs, based
on the model shown in this figure.

uirt$. n
C o3 >
Ing
boolean o | uints
s »— (1)
In1 Out2

uints
bk

e
Inz

¥

Swwitch

This example uses signal objects, but the procedure for generating code from
parameter objects (or from any class of objects that supports CSCs) is almost
the same. (If you plan to use CSCs with parameter objects, see “Setting Code
Generation Options for Custom Storage Classes” on page 4-42 for the correct
use of the Inline parameters option.)

The model contains three named signals (aa, bb, and cc). Using the
predefined Struct CSC, this example packs these signals into a named
struct, mySignals, in the generated code. The struct declaration is then
exported to externally written code.

To generate the struct, you must instantiate Simulink.Signal objects
that are associated (by name) with the signals in the model, and assign the

4-10

Custom Storage Classes and Simulink Data Obijects

appropriate storage class to the Simulink.Signal objects. In this case, the
code generator uses the Struct custom storage class. After these objects are
configured, code generation can proceed.

Set Model Properties

Before configuring the signal objects, make sure you deselect the Ignore
custom storage classes option in the Real-Time Workshop pane of the
active configuration set.

Instantiate Signal Objects

The next step is to instantiate signal objects. You can do this with MATLAB
commands as shown below.

aa = Simulink.Signal
bb Simulink.Signal
cc Simulink.Signal

Alternatively, you can create the signal objects in the Simulink Model Explorer
by clicking Add Simulink Signal or selecting Add Simulink.Signal from
the Add menu.

Assign Storage Class and Instance-Specific Properties. The next step is
to assign the Struct custom storage class to the signal objects. The easiest
way to do this is to use the object dialog box in the Model Explorer to set the
RTWInfo attributes of the signal objects. The following figure illustrates how
to set the Storage class and Struct name attributes for the signal object aa.

Signal objects bb and cc (not shown) are configured identically.

4-11

4 cusiom Storage Classes

4-12

x
[rata type: lh Units: I—
Dimensions: I‘I— Complexity: Ih
Sample time: I‘I— Sample mode: Ih
Minimurm: — |-Inf I awimurn: Inf
Initial waluie: l—

—Code generation option

Storage class:l Struct [Custom) LI
Custom attribu

’V Struct name: ImySignaIs

Alias: I

Description:

Ok I Lancel

The association between identically named model signals and signal objects
is formed automatically. The symbols aa, bb, and cc resolve to the signal
objects aa, bb, and cc, which have custom storage class Struct. You can
display the storage class of the signals in the block diagram by selecting
Port/Signal Display > Storage Class from the Simulink Format menu.
The figure below shows the block diagram with signal data types and signal

storage classes displayed.

@ uintd Struct > o
aa
Ind}
boalean Struct | uirts
O »— »(1)
In1 Otz
uirt? Struct .
b =
Inz

Sawitchd

Custom Storage Classes and Simulink Data Obijects

Generate Code. The model is now configured to generate the desired data
structure for the signals. After code generation, the relevant definitions and
declarations are located in three files:

* model types.h defines the following struct type for storage of the three
signals.

typedef struct MySignals_tag {
boolean_T cc;
uint8_T bb;
uint8_T aa;

} mySignals_type;

® model.c or .cpp declares the variable mySignals, as specified in the
object’s instance-specific StructName attribute. The variable is referenced
in the code generated for the Switch block.

/* Definition for Custom Storage Class: Struct */

mySignals_type mySignals = {
/[* cc */
FALSE,
/* bb */
0,
[* aa */
0
b

/* Switch: '<Root>/Switch1' */
if(mySignals.cc) {
rtb_Switch1 = mySignals.aa;
} else {
rtb_Switch1 = mySignals.bb;
}

4-13

4 cusiom Storage Classes

4-14

® model.h exports the mySignals Struct variable.

/* Declaration for Custom Storage Class: Struct */
extern mySignals_type mySignals;

This example shows the use of the Struct class in its default configuration.
Using the Custom Storage Class Designer, you can customize the Struct
class or any of the other predefined CSCs and tailor code generation to your
own requirements.

Designing Custom Storage Classes

Designing Custom Storage Classes

® “Overview” on page 4-15

e “Using the Custom Storage Class Designer” on page 4-17

Overview
The Custom Storage Class Designer (cscdesigner) is a tool for creating and

managing CSCs. The Custom Storage Class Designer lets you
¢ Load existing CSCs and view and edit their definitions
® Create new CSCs, or copy and modify existing CSC definitions

¢ Control placement of data objects in memory (for example, in RAM, ROM,
and flash memory sections)

¢ Preview pseudocode generated from CSC definitions

¢ Verify the correctness and consistency of CSC definitions

e Save CSC definitions

This section provides a quick introduction to the Custom Storage Class

Designer, with references to the detailed descriptions located in the next
section, “Using the Custom Storage Class Designer” on page 4-17.

To open the Custom Storage Class Designer, type the following command at
the MATLAB prompt:

cscdesigner

When first opened, cscdesigner scans all data class packages on the
MATLAB path to detect packages that have a CSC registration file. A
message window is displayed while scanning proceeds.

When the scan is complete, the Custom Storage Class Designer window opens
(see Custom Storage Class Designer Window on page 4-16).

4-15

4 cusiom Storage Classes

4-16

E! Custom Storage Class Designer ﬂ

— Walidation result
Sk package:l Simulink jv Last validation succeeded.
Custom Storage Class I Memory Section |
Custom storage class definitions: MNew
Copy
EonsF Up
“Wolatile
Constvolatile Diowin
Define = ||—Pseudocode pr
. Remove
ExportT oFile
IrmpartFromFile ‘alidate Header file:
Struct No header file is specified. By
GetSet exported via the generated mode
General IEomments | Structure Attributes | Type definition:
Name:lBitFieh:l /* CS8C type comment generated b
. typedef struct INSTANCE SPECIFI
Type:l FlatStructure LI ¥ For parameters v For signals .

. unsigned int varNamel:1l;
I ,l I ,l
Memory section: | Default [rata scope: | Exported } INSTANCE_SPECIFIC STRUCTNAME
Diata initialization:l Auto VI Diata access:l Direct VI

LI I Declaration:

Header file: I Specify

£* CEC declaration comment gene
extern INSTANCE SPECIFIC_STRUCT

Definition:

F* CEC definition comment gener
INSTANCE_SPECIFIC_ STRUCTNAME ty

’rFiIename: czc_registration.m

Location: E:vmatlabitoolboxhsimulinkssirmulink S ESimulink Save | 1 | _>|

Ok | Lancel | Help | Lpply |

Custom Storage Class Designer Window
The window is divided into several panels:

* Select package panel: Lets you select from a menu of data class packages
that have CSC definitions associated with them. See “Selecting a Data
Class Package” on page 4-17 for details.

* Custom Storage Class / Memory Section properties panel: Lets you
select, view, edit, copy, verify, and perform other operations on CSC
definitions or memory section definitions. The common controls in the

Designing Custom Storage Classes

Custom Storage Class / Memory Section properties panel are described
in “Selecting and Maintaining CSC and Memory Section Definitions” on
page 4-18.

When the Custom Storage Class tab is selected, you can select a CSC
from a list, and edit its properties. See “Editing Properties of CSCs” on
page 4-19 for details.

When the Memory Section tab is selected, you can select a memory section
definition from a list, and edit its properties. Each CSC has an associated
memory section definition. A memory section definition is a named
collection of properties related to placement of an object in memory. The
memory section properties let you specify storage directives for data objects.
For example, you can specify const declarations, or compiler-specific
#pragma statements for allocation of storage in ROM or flash memory
sections. See “Editing Memory Section Definitions” on page 4-27 for details.

* Filename panel: Displays the filename and location of the current CSC
registration file, and lets you save your CSC definition to that file. See
“Saving Your Definitions” on page 4-30 for details.

¢ Pseudocode preview panel: Displays a preview of code that is generated
from objects of the given class. The preview is pseudocode, since the
actual symbolic representation of data objects is not available until code
generation time. See “Previewing Generated Code” on page 4-29 for details.

® Validation result panel: Displays any errors encountered when the
currently selected CSC definition is validated. See “Validating CSC
Definitions” on page 4-29 for details.

Using the Custom Storage Class Designer

This section provides a detailed description of the Custom Storage Class
Designer window and each of its functions.

Selecting a Data Class Package

A CSC definition is uniquely associated with a Simulink data class package.
The link between a CSC and a package is formed when a CSC registration
file (csc_registration.m) is located in the package directory. You never
need to search for or edit a CSC registration file directly; the Custom Storage
Class Designer locates all available CSC registration files and displays the
associated package names in the Select package panel.

4-17

4 cusiom Storage Classes

4-18

Select package: I Simulink, - l

The Select package panel contains a menu of names of all detected data
class packages that have a CSC registration file. At least one such package,
the Simulink package, is always present.

When you select a package, the CSCs and memory section definitions
belonging to the package are loaded into memory and their names are
displayed in the scrolling list in the Custom storage class panel. The name
and location of the CSC registration file for the package is displayed in the
Filename panel.

Selecting and Maintaining CSC and Memory Section Definitions

The Custom Storage Class / Memory Section panel lets you select, view,
and edit CSC or memory section definitions. In the picture below, the Custom
Storage Class tab is selected.

Custom Storage Class I Memory Section |

Custom storage class definitions: MNew
Default =
BilField Copy
EonsF Up
“Wolatile
Constvolatile Down
Define Remove
ExportT oFile
ImportFromFile W alidate
Struct
GetSet

General IEomments | Structure Attributes |

Mame: |EitField

Type:l FlatStructure LI ¥ For parameters [v For signals

Memory section:l Drefault VI [rata scope:l Exported VI
Diata initialization:l Auta VI Diata access:l Direct VI

Header file: I Specify | |

The list at the top of the panel displays the definitions for the currently
selected package. To select a definition for viewing and editing, click on the
desired list entry.

Designing Custom Storage Classes

The properties of the selected definition are displayed in the area below the
list. The number and type of properties vary for different types of CSC and
memory section definitions. See “Editing Properties of CSCs” on page 4-19 for
specific information about the properties of the predefined CSCs. See “Editing
Memory Section Definitions” on page 4-27 for specific information about the
properties of the predefined memory section definitions.

The buttons to the right of the list perform the following functions:

® New: Creates a new CSC definition with default values.

* Copy: Creates a copy of the selected definition. Copies are given a default
name by the convention

definition_name_n

where definition_name is the name of the original definition, and n is an
integer indicating successive copy numbers (for example: BitField 1,
BitField 2, ...)

e Up: Moves the selected definition one position up in the list.
* Down: Moves the selected definition one position down in the list
* Remove: Removes the selected definition from the list.

¢ Validate: Performs a consistency check on the currently selected definition.
Errors are reported in the Validation result panel.

Editing Properties of CSCs

To view and edit the properties of a CSC, click the Custom Storage Class
tab in the Custom Storage Class / Memory Section panel. Then, select a
CSC name from the Custom storage class definitions list.

The CSC properties are divided into several categories, selected by tabs.
Selecting a class, and setting property values for that class, can change the
available tabs, properties, and values. As you change property values, the
effect on the generated code is immediately displayed in the Pseudocode
preview panel. In most cases, you can define your CSCs quickly and easily
by selecting the Pseudocode preview panel and using the Validate button
frequently.

4-19

4 cusiom Storage Classes

The property categories and corresponding tabs are as follows:

General. Properties in the General category are common to all CSCs. These
properties are shown in the next figure.

General IEomments | Structure Attributes |

Mame: |EitField

Type:l FlatStructure LI ¥ For parameters v For signals

Memory section:l Drefault VI [rata scope:l Exported VI
Diata initialization:l Auto VI Diata access:l Direct VI

Header file: I Specify | |

Properties in the General category, and the possible values for each property,
are as follows:

® Name: The CSC name, selected from the Custom storage class
definitions list.

* Type: Specifies how objects of this class are stored. Values:

= Unstructured: Objects of this class generate unstructured storage
declarations (for example, scalar or array variables), for example:

datatype dataname[dimension];

= FlatStructure: Objects of this class are stored as members of a struct.
A Structure Attributes tab is also displayed, allowing you to specify
additional properties such as the struct name. See “Structure Attributes”
on page 4-25.

= Other: Used for certain data layouts, such as nested structures,
that cannot be generated using the standard Unstructured and
FlatStructure custom storage class types. If you want to generate other
types of data, you can create a new custom storage class from scratch
by writing the necessary TLC code. See “Defining Advanced Custom
Storage Class Types” on page 4-35 for more information.

¢ For parameters and For signals: These options let you enable a CSC
for use with only certain classes of data objects. For example, it does not
make sense to assign storage class Const to a Simulink.Signal object.

4-20

Designing Custom Storage Classes

Accordingly, the For signals option for the Const class is deselected, while
the For parameters is selected.

Memory section: Selects one of the memory sections defined in the
Memory Section panel. See “Editing Memory Section Definitions” on
page 4-27.

Data scope: Controls the scope of symbols generated for data objects of
this class. Values:

Auto: Symbol scope is determined internally by Real-Time Workshop. If
possible, symbols have File scope. Otherwise, they have Exported scope.

Exported: Symbols are exported to external code in the header file
specified by the Header File field. If no Header File is specified,
symbols are exported to external code in model .h.

Imported: Symbols are imported from external code in the header file
specified by the Header File field. If you do not specify a header file, an
extern directive is generated in model private.h. For imported data, if
the Data initialization value is Macro , a header file must be specified.

File: The scope of each symbol is the file that defines it. File scope
requires each symbol to be used in a single file. If the same symbol is
referenced in multiple files, an error occurs at code generation time.

Instance specific: Symbol scope is defined by the Data scope
property of each data object.

Data initialization: Controls how storage is initialized in generated code.
Values:

Auto: Storage initialization is determined internally by Real-Time
Workshop. Parameters have Static initialization, and signals have
Dynamic initialization.

None: No initialization code is generated.

Static: A static initializer of the following form is generated:

datatype dataname[dimension] = {...};

Dynamic: Variable storage is initialized at runtime, in the
model_initialize function.

Macro: A macro definition of the following form is generated:

4-21

4 cusiom Storage Classes

4-22

#define data numeric_value

The Macro initialization option is available only for use with
unstructured parameters. It is not available when the class is configured
for generation of structured data, or for signals. If the Data scope value
is Imported, a header file must be specified.

= Instance specific: Initialization is defined by the Data initialization
property of each data object.

Note When necessary, Real-Time Workshop Embedded Coder generates
dynamic initialization code for signals and states even if the CSC has its
Data initialization set to None or Static.

Data access: Controls whether imported symbols are declared as variables
or pointers. This field is enabled only when Data scope is set to Imported
or Instance-specific. Values:

= Direct: Symbols are declared as simple variables, such as

extern myType myVariable;

= Pointer: Symbols are declared as pointer variables, such as

extern myType *myVariable;

= Instance specific: Data access is defined by the Data access
property of each data object.

Header file: Defines the name of a header file that contains exported
or imported variable declarations and definitions for objects of this class.
Values:

= Specify: An edit field is displayed to the right of the property. This lets
you specify a header file for exported or imported storage declarations.
Specify the full filename, including the filename extension (such as .h).
Use quotes or brackets as in C code to specify the location of the header
file. Leave the edit field empty to specify no header file.

Designing Custom Storage Classes

= Instance specific: The header file for each data object is defined by
the Header file property of the object. Leave the property undefined to
specify no header file for that object.

If the Data scope is Exported, specifying a header file is optional. If you
specify a header file name, the custom storage class generates a header file
containing the storage declarations to be exported. Otherwise, the storage
declarations are exported in model .h.

If the Data scope of the class is Imported, and Data initialization is
Macro, you must specify a header file name. A #include directive for the
header file is generated.

Comments. The Comments panel lets you specify comments to be generated
with definitions and declarations.

General | Comments IStructureAttributes |

Comment rules: [$1=]l

Type comment:

Declaration comment:

Definition commert:

Comments must conform to the ANSI C standard (/*...*/). Use \n to specify
a new line.

Properties in the Comments panel are as follows:

* Comment rules: If Specify is selected, edit fields allowing you to enter
comments are displayed. If Default is selected, comments are generated
under control of Real-Time Workshop.

* Type comment: The comment entered in this field precedes the typedef
or struct definition for structured data.

* Declaration comment: Comment that precedes the storage declaration.

4-23

4 cusiom Storage Classes

¢ Definition comment: Comment that precedes the storage definition.

4-24

Designing Custom Storage Classes

Structure Attributes. The Structure Attributes panel gives you detailed
control over code generation for structs (including bitfields). The Structure
Attributes tab is displayed for CSCs whose Type parameter is set to
FlatStructure. The following figure shows the Structure Attributes panel.

General | Comments | Structure Attributes |

Struct name:l Specify j |myStruct

W s typedef I~ Bit-pack bocleans
Type tag: Im_l,lTag Type name: ImyType
Type token:m

Structure Atiributes Panel
The Structure Attributes properties are as follows:
¢ Struct name: If you select Instance specific, specify the struct name

when configuring each instance of the class.

If you select Specify, an edit field appears (as shown in Structure
Attributes Panel on page 4-25) for entry of the name of the structure to be
used in the struct definition. Edit fields Type tag, Type token, and
Type name are also displayed.

¢ Is typedef: When this option is selected a typedef is generated for the
struct definition, for example:

typedef struct {

} SignalDataStruct;

Otherwise, a simple struct definition is generated.

¢ Bit-pack booleans: When this option is selected, signals and/or
parameters that have Boolean data type are packed into bit fields in the
generated struct.

* Type tag: Specifies a tag to be generated after the struct keyword in
the struct definition.

¢ Type token: Some compilers support an additional token (which is simply
another string) after the type tag. To generate such a token, enter the
string in this field.

4-25

4 cusiom Storage Classes

* Type name: Specifies the string to be used in typedef definitions. This
field is visible if Is typedef is selected.

The following listing is the pseudocode preview corresponding to the
Structure Attributes properties displayed in Structure Attributes Panel
on page 4-25.

Header file:

No header file is specified. By default, data is

exported with the generated model.h file.

Type definition:

/* CSC type comment generated by default */

typedef struct aToken myTag {

} myType;

Declaration:
/* CSC declaration comment generated by default */

extern myType MyStruct;

Definition:
/* CSC definition comment generated by default */

myType MyStruct = {...};

4-26

Designing Custom Storage Classes

Editing Memory Section Definitions

The Memory Section panel lets you view, edit, and verify memory section
definitions. Memory section definitions add comments, qualifiers, and
#pragma directives to generated symbol declarations. The next figure shows
the Memory Section panel with the MemConstVolatile memory section
selected:

Custom Storage Class | Memary Section |

Memory section definitions:
Default
MemCarnist
Memolatile) Up

Mew

Copy

Davrn
Remove

W alidate

—bemory section:

M ame: IMemEonstVoIatiIe

W |5 const ¥ | volatile Qualifier:l

Caomment:

/# Conztvolatile memary section =/

Fragma surrounds:l All variables VI

Pre-memaory-section pragma:

Post-memary-gection pragma:

The Memory section definitions list lets you select a memory section
definition to view or edit. The predefined memory section definitions are as
follows:

e Default: A placeholder definition (read-only).

® MemConst: Generates a const declaration.

® MemVolatile: Generates a volatile declaration.

® MemConstVolatile: Generates a const volatile declaration.

4-27

4 cusiom Storage Classes

The available memory section definitions also appear in the Memory section
name menu in the Custom Storage Class panel.

The properties of a memory section definition are as follows:

* Memory section name: Name of the memory section (displayed in
Memory section definitions list).

* Is const: If selected, a const qualifier is added to the symbol declarations.

¢ Is volatile: If selected, a volatile qualifier is added to the symbol
declarations.

® Qualifier: The string entered into this field is added to the symbol
declarations as a further qualifier. Note that no verification is performed
on this qualifier.

* Memory section comment: Comment inserted before declarations
belonging to this memory section. Comments must conform to the ANSI C
standard (/*...*/). Use \n to specify a new line.

¢ Pragma surrounds: Specifies whether the pragma should surround All
variables or Each variable. When Pragma surrounds is set to Each
variable, the %<identifier> token is allowed in pragmas and will be
replaced by the variable or function name.

* Pre-memory section pragma: pragma directive that precedes the storage
definition of data belonging to this memory section. The directive must
begin with #pragma.

* Post-memory section pragma: pragma directive that follows the storage
definition of data belonging to this memory section. The directive must
begin with #pragma.

4-28

Designing Custom Storage Classes

Previewing Generated Code

If you click Validate on the Memory Section panel, the Pseudocode
preview panel displays a preview of code that is generated from objects of the
given class. The panel also displays messages (in blue) to highlight changes
as they are made. The code preview changes dynamically as you edit the class
properties. The next figure shows a code preview for the MemConstVolatile
memory section.

—Pzeudocode previ

Header file: Mot applicable.

Type definition: Not applicabkle.

Declaration:

extern const wvolatile DATATYPE DATANAME:

Definition:

f* ConstVolatile memory section */
const wolatile DATATYPE DATANAME:

Validating CSC Definitions

To validate a CSC definition, select the definition and click Validate on the
Memory Section panel. The Custom Storage Class Designer then checks the
definition for consistency. The Validation result panel displays any errors
encountered when a selected CSC definition is validated. The next figure
shows the Validation result panel with a typical error message:

— Walidation result

Invalid CustomBtorageClass: "BitField 1"
Parameter can not be dynamically initialized.

Validation is also performed whenever CSC definitions are saved. In this case,
all CSC definitions are selected. (See “Saving Your Definitions” on page 4-30.)

4-29

4 cusiom Storage Classes

4-30

Saving Your Definitions

After you have created or edited a CSC or memory section definition, you
must save your definition to the CSC registration file. To do this, click Save
in the Filename panel. When you click Save, the current CSC definitions
that are in memory are validated, and the CSC definitions are written out.

’rFiIename: czc_registration.m

Location: E:vmatlabitoolboxbsimulinkssirmulink @S imulink: Save |

If errors occur, they are reported in the Validation result panel. The
definitions are still saved, however. You should correct all validation errors
and resave your definitions.

Note If you edit a CSC definition that has been assigned to existing
parameter or signal objects, you must restart MATLAB after editing and
saving the CSC definition.

Creating Packages with CSC Definitions

Creating Packages with CSC Definitions

You can create a package and associate your own CSC definitions with
classes contained in the package. You do this creating a data object package
containing classes derived from Simulink.Parameter or Simulink.Signal;
this package must have a CSC registration file. The procedure below describes
how to create such a package.

1 Open the Simulink Data Class Designer by typing the following command
at the MATLAB command prompt:

sldataclassdesigner

2 The Data Class Designer loads all packages that exist on the MATLAB
path.

3 To create a new package, click New next to the Package name field. If
desired, edit the Package name. Then, click OK.

4 In the Parent directory field, enter the path to the directory where you
want to store the new package.

5 Click on the Classes tab.

6 Create a new class by clicking New next to the Class name field. If
desired, edit the Class name. Then, click OK.

7 In the Derived from menus, select Simulink.Signal or
Simulink.Parameter.

8 The Create your own custom storage classes for this class option is
now enabled. This option is enabled when the selected class is derived from
Simulink.Signal or Simulink.Parameter. You must select this option to
create CSCs for the new class. If the Create your own custom storage
classes for this class option is not selected, the new class inherits the
CSCs of the parent class.

4-31

4 cusiom Storage Classes

4-32

Note To create a CSC registration file for a package, the Create your
own custom storage classes for this class option must be selected for at
least one of the classes in the package.

In the figure below, a new package called mypkg has been created. This
package contains a new class, derived from Simulink.Signal, called sig.
The Create your own custom storage classes for this class option
is selected.

Simulink Data Class Designer 10l =|

rUser-defined package

Fackage name:

|mvpkg 'I R | Copy | Renamel Removel

Farent directory (location of @directory):
IF:I

Classes | Enumerated Property Types | Custom Storage Classes |

Class name:
sig 7 e | Copy | Rename | Remove |
Derived from: ISimuIink V ISignaI j

¥ Create yaur own custom storage classes for this classi

Froperies of this class {inherited propedies disabled):

Froperty Name Froperty Type WValue (o ey |
Fath st v -
— = 0]
RTWlnfo — Unknown— 7] I 4|
Description strifid [~ Diawh |
DataType string [~ v Remove |

Class initialization {1 Insert Comments to AssistWriting Class Initializationl

% ENTER CLA435 INITIALIZATION CODE HERE (optional) ...

I(I |>

| |

== Canfirm Changesl Reload Packages

Help | Close |

|

Creating Packages with CSC Definitions

9 If desired, repeat steps 6—8 to add other derived classes to the package and
associate CSCs with them.

10 Click Confirm Changes. In the Confirm Changes pane, select the
package you created. Add the parent directory to the MATLAB path if
necessary. Then, click Write Selected.

The package directories and files, including the CSC registration file, are
written out to the parent directory.

11 Click Close.

12 You can now view and edit the CSCs belonging to your package in the
Custom Storage Class Designer. Initially, the package contains only the
Default CSC definition, as shown in the figure below.

E! Custom Storage Class Designer ﬂ
— Walidation result
St el e = Last validation succeeded.
Custom Storage Class I Memaory Section |
Custom storage class definitions: MNew
Default
Copy
Up
Davrn
—Pzeudocode pr
Remove
“alidate Header file:
No header file is specified. By
exported wia the generated model
General IEU"“"“E”tS | Type definition: Not applicable.
Name:IDefauIt
Type:l Unstructured LI ¥ Forparameters W For signals Declaration:

Memary section:l Default VI Data scope:l Exported VI #* CEC declaration comment gener
extern DATATYPE DATANAME [DIMENSI
Diata initialization:l Auto VI Diata access:l Direct VI

Header file:l Specify LI | Definition:

£* CEC definition comment gensrs
DATATYPE DATANAME [DIMENSION] ;

Location: F:y\&mypkg Save | 4 | _’I

’rFiIename: czc_registration.m

Ok | Lancel | Help | Apply |

4-33

4 cusiom Storage Classes

13 Add and edit your CSC and memory section definitions, as described in
“Designing Custom Storage Classes” on page 4-15. After you have created
CSC definitions for your package, you can instantiate objects of the classes
belonging to your package, and assign CSCs to them.

4-34

Defining Advanced Custom Storage Class Types

Defining Advanced Custom Storage Class Types

® “Overview” on page 4-35

o “Create Your Own Parameter and Signal Classes” on page 4-35

® “Create a Custom Attributes Class for Your CSC (Optional)” on page 4-36
* “Write TLC Code for Your CSC” on page 4-36

® “Register Custom Storage Class Definitions” on page 4-37

Overview

Certain data layouts (for example, nested structures) cannot be generated
using the standard Unstructured and FlatStructure custom storage class
types. You can create a new custom storage class from scratch if you want
to generate other types of data. Note that this requires knowledge of TLC
programming and use of a special advanced mode of the Custom Storage
Class Designer.

The GetSet CSC (see “GetSet Custom Storage Class for Data Store Memory”
on page 4-39) is an example of an advanced CSC that is provided with
Real-Time Workshop Embedded Coder.

The following sections explain how to define advanced CSC types.

Create Your Own Parameter and Signal Classes

The first step is to use the Simulink Data Class Designer to create your
own package containing classes derived from Simulink.Parameter or
Simulink.Signal. This procedure is described in “Creating Packages with
CSC Definitions” on page 4-31.

Add your own object properties and class initialization if desired. For each

of your classes, select the Create your own custom storage classes for
this class option.

4-35

4 cusiom Storage Classes

4-36

Create a Custom Atiributes Class for Your CSC
(Optional)

If you have instance-specific properties that are relevant only to your

CSC, you should use the Simulink Data Class Designer to create a custom
attributes class for the package. A custom attributes class is a subclass of
Simulink.CustomStorageClassAttributes. The name, type, and default
value properties you set for the custom attributes class define the user view of
instance-specific properties.

For example, the ExportToFile custom storage class requires that you set
the RTWInfo.CustomAttributes.HeaderFile property to specify a .h file
used for exporting each piece of data. See “Predefined CSCs” on page 4-6 for
further information on instance-specific properties.

Write TLC Code for Your CSC

The next step is to write TLC code that implements code generation for data
of your new custom storage class. A template TLC file is provided for this
purpose. To create your TLC code, follow these steps:

1 Create a tlc directory inside your package’s @directory (if it does not
already exist). The naming convention to follow is

@PackageName/tlc

2 Copy TEMPLATE_v1.tlc (or another CSC template) from
matlabroot/toolbox/rtw/targets/ecoder/csc_templates into your tlc
directory to use as a starting point for defining your custom storage class.

3 Write your TLC code, following the comments in the CSC template file.
Comments describe how to specify code generation for data of your custom
storage class (for example, how data structures are to be declared, defined,
and whether they are accessed by value or by reference).

Alternatively, you can copy a custom storage class TLC file from another
existing package as a starting point for defining your custom storage class.

Defining Advanced Custom Storage Class Types

Register Custom Storage Class Definitions

After you have created a package for your new custom storage class and
written its associated TLC code, you must register your class definitions with
the Custom Storage Class Designer, using its advanced mode.

The advanced mode supports selection of an additional storage class Type,
designated Other. The Other type is designed to support special CSC
types that cannot be accommodated by the standard Unstructured and
FlatStructure custom storage class types. The Other type cannot be

assigned to a CSC except when the Custom Storage Class Designer is in
advanced mode.

4-37

4 cusiom Storage Classes

4-38

To register your class definitions:

1 Launch the Custom Storage Class Designer in advanced mode by typing
the following command at the MATLAB prompt:

cscdesigner -advanced

2 Select your package and create a new custom storage class.

3 Set the Type of the custom storage class to Other. Note that when you do
this, the Other Attributes pane is displayed. This pane is visible only for
CSCs whose Type is set to Other.

Comments | Other Attributes |

TLL file name: I

CSC attributes class name:

If you specify a customized package, additional options, as defined by the
package, also appear on the Other Attributes pane.

4 Set the properties shown on the Other Attributes pane. The properties
are:

¢ Is grouped: Select this option if you intend to combine multiple data
objects of this CSC into a single variable in the generated code. (for
example, a struct).

¢ TLC file name: Enter the name of the TLC file corresponding to this
custom storage class. The location of the file is assumed to be in the /tlc
subdirectory for the package, so you should not enter the path to the file.

e CSC attributes class name: (optional) If you created a custom
attributes class corresponding to this custom storage class, enter the full
name of the custom attributes class. (see “Create a Custom Attributes
Class for Your CSC (Optional)” on page 4-36).

5 Set the remaining properties on the General and Comments panes based
on the layout of the data that you wish to generate (as defined in your
TLC file).

GetSet Custom Storage Class for Data Store Memory

GetSet Custom Storage Class for Data Store Memory

The GetSet custom storage class is designed to generate specialized function
calls to read from (get) and write to (set) the memory associated with a Data
Store Memory block. The instance-specific properties of the GetSet storage
class are summarized in GetSet Storage Class Properties on page 4-39.

GetSet Storage Class Properties

Property Description

GetFunction String that specifies the name of a function call to read
data.

SetFunction String that specifies the name of a function call to write
data.

HeaderFile String that specifies the name of a header (. h) file to add

(optional) as an #include in the generated code.

Note If you omit the HeaderFile property for a
GetSet data object, you must specify a header file by
an alternative means, such as the Header file field

of the Real-Time Workshop/Custom Code pane of
the Configuration Parameters dialog box. Otherwise,
the generated code might not compile or might function
improperly.

For example, if the GetFunction of data store memory X is specified as
'get_X' then the generated code calls get_X() wherever the value of X is
used. Similarly, if the SetFunction for signal X is specified as 'set_X' then
the generated code calls set_X(value) wherever the value of X is assigned.

For wide signals, an additional index argument is passed, so the calls to the
get and set functions are get_X(idx) and set_X(idx, value) respectively.

4-39

4 cusiom Storage Classes

4-40

The following restrictions apply to the GetSet custom storage class:

® The GetSet custom storage class supports only signals of non-complex
data types.

* The GetSet custom storage class is designed for use with the state of the
Data Store Memory block

The GetSet storage class is an example of an advanced CSC because it cannot
be represented by the standard Unstructured or FlatStructure custom
storage class types. To access the CSC definition for GetSet, you must launch
Custom Storage Class designer in advanced mode:

cscdesigner -advanced

For more details about the definition of the GetSet storage class, look at its
associated TLC code in the file

matlabroot\toolbox\simulink\simulink\@Simulink\tlc\GetSet.tlc

Example of Generated Code with GetSet Custom
Storage Class

The model below contains a Data Store Memory that resolves to Simulink
signal object X. X is configured to use the GetSet custom storage class as
follows:

X = Simulink.Signal;

X.RTWInfo.StorageClass = “Custom';
X.RTWInfo.CustomStorageClass = "GetSet';
X.RTWInfo.CustomAttributes.GetFunction = “get X';
X.RTWInfo.CustomAttributes.SetFunction = “set X';
X

.RTWInfo.CustomAttributes.HeaderFile ‘user_file.h';

GetSet Custom Storage Class for Data Store Memory

-ioix

File Edit WYiew Simulation Format Tools Help

o [
M pSwite Datastore DSRead !
Memory

The following code is generated for this model:

/* Includes for objects with custom storage classes. */
#include "user_file.h"

void getset csc_step(void)

{
/* local block i/o variables */
real T rtb_DSRead_o;

/* DataStoreWrite: '<Root>/DSWrite' incorporates:
* Inport: '<Root>/Int'

*/

set_X(getset _csc_U.In1);

/* DataStoreRead: '<Root>/DSRead' */
rtb_DSRead_o = get_X();

/* Outport: '<Root>/Outi1' */
getset_csc_Y.Out1 = rtb_DSRead_o;

Note The Data Store Memory block creates a local variable to ensure that
its value does not change in the middle of a simulation step. This also avoids
multiple calls to the data’s GetFunction.

4-41

4 cusiom Storage Classes

Setting Code Generation Options for Custom Storage
Classes

The following code generation options affect the operation of CSCs:

® During code generation, custom storage classes assigned to parameters are
ignored unless the Inline parameters option in the Optimization pane
of the Configuration Parameters dialog box is selected. When configuring
your model and its parameters, the recommended practice is to select the
Inline parameters option first, then assign storage classes to the desired
variables or objects.

In this respect, code generation with custom storage classes behaves
identically to code generation with built-in storage classes.

* Before generating code, make sure that the Ignore custom storage
classes option in the Custom storage classes subpane of the Real-Time
Workshop pane of the Configuration Parameters dialog box is deselected.
When this option is selected, data objects with custom storage classes are
treated as if their storage class attribute is set to Auto.

4-42

Custom Storage Class Limitations

Custom Storage Class Limitations

¢ The Fen block does not support parameters with custom storage class in
code generation.

¢ For CSCs in models that use model referencing:

Note The term grouped CSC refers to a CSC that results in multiple data
objects (in the base workspace) being referenced with a single variable in
the generated code. For example, several signal objects might be grouped
together in a structure by using the Struct or Bitfield custom storage
classes. Data grouped in this way are referred to as grouped data.

= If data is assigned a grouped CSC, the CSC’s Data scope property
must be Imported and the data declaration must be provided in a
user-supplied header file.

= If data is assigned an ungrouped CSC (for example, Const) and the
data’s Data scope property is Exported, its Header file property must
be unspecified. This results in the data being exported with the standard
header file, model .h. Note that for ungrouped data, the Data scope and
Header file properties are either specified by the selected CSC, or as
one of the data object’s instance-specific properties.

4-43

4 cusiom Storage Classes

Older Custom Storage Classes (Prior to Release 14)

¢ “Simulink.CustomParameter Class” on page 4-44

¢ “Simulink.CustomSignal Class” on page 4-46

® “Instance-Specific Attributes for Older Storage Classes” on page 4-49

® “Assigning a Custom Storage Class to Data” on page 4-51

¢ “Code Generation with Older Custom Storage Classes” on page 4-51

® “Compatibility Issues for Older Custom Storage Classes” on page 4-52
In releases prior to Real-Time Workshop Embedded Coder 4.0 (MATLAB
Release 14), custom storage classes were implemented with special

Simulink.CustomSignal and Simulink.CustomParameter classes. This
section describes these older classes.

Note Models that use the Simulink.CustomSignal and
Simulink.CustomParameter classes continue to operate correctly.

The current CSCs support a superset of the functions of the older
classes. Therefore, you should consider using the Simulink.Signal and
Simulink.Parameter classes instead (see “Compatibility Issues for Older
Custom Storage Classes” on page 4-52).

Simulink.CustomParameter Class

This class is a subclass of Simulink.Parameter. Objects of this class have
expanded RTWInfo properties. The properties of Simulink.CustomParameter
objects are:

® RTWInfo.StorageClass. This property should always be set to the default
value, Custom.

® RTWInfo.CustomStorageClass. This property takes on one of the
enumerated values described in the tables below. This property controls
the generated storage declaration and code for the object.

® RTWInfo.CustomAttributes. This property defines additional attributes
that are exclusive to the class, as described in “Instance-Specific Attributes
for Older Storage Classes” on page 4-49.

4-44

Older Custom Storage Classes (Prior to Release 14)

® Value. This property is the numeric value of the object, used as an initial
(or inlined) parameter value in generated code.

4-45

4 cusiom Storage Classes

4-46

Simulink.CustomSignal Class

This class is a subclass of Simulink.Signal. Objects of this class have
expanded RTWInfo properties. The properties of Simulink.CustomSignal
objects are:

RTWInfo.StorageClass. This property should always be set to the default
value, Custom.

RTWInfo.CustomStorageClass. This property takes on one of the
enumerated values described in the tables below. This property controls
the generated storage declaration and code for the object.

RTWInfo.CustomAttributes. This optional property defines additional
attributes that are exclusive to the storage class, as described in
“Instance-Specific Attributes for Older Storage Classes” on page 4-49.

The following tables summarize the predefined custom storage classes for
Simulink.CustomSignal and Simulink.CustomParameter objects. The entry
for each class indicates

Name and purpose of the class.

Whether the class is valid for parameter or signal objects. For example, you
can assign the storage class Const to a parameter object. This storage class
is not valid for signals, however, since signal data (except for the case of
invariant signals) is not constant.

Whether the class is valid for complex data or nonscalar (wide) data.

Data types supported by the class.

The first three classes, shown in Const, ConstVolatile, and Volatile Storage
Classes (Prior to Release 14) on page 4-47, insert type qualifiers in the data
declaration.

Older Custom Storage Classes (Prior to Release 14)

Const, ConstVolatile, and Volatile Storage Classes (Prior to Release 14)

Class Data
Name Purpose Parameters | Signals | Types | Complex | Wide
Const Use const Y N any Y Y
type qualifier
in declaration
ConstVolatile Use Y N any Y Y
const volatile
type qualifier
in declaration
Volatile Use volatile Y Y any Y Y
type qualifier
in declaration

The second set of three classes, shown in ExportToFile, ImportFromFile, and
Internal Storage Classes (Prior to Release 14) on page 4-47, handles issues
of data scope and file partitioning.

ExporiToFile, ImportFromFile, and Internal Storage Classes (Prior to Release 14)

Class
Name

ExportToFile

Purpose

Generate and include
files, with
user-specified

name,

containing global
variable

declarations and
definitions

Parameters
Y

Data
Signals | Types
Y any

Complex
Y

Wide
Y

4-47

4 cusiom Storage Classes

4-48

ExportiToFile, ImportFromFile, and Internal Storage Classes (Prior to Release 14)

(Continued)
Class Data
Name Purpose Parameters | Signals | Types | Complex | Wide
ImportFromFile| Include predefined Y Y any Y Y
header files
containing
global variable
declarations
Internal Declare and Y Y any Y Y

define global
variables

whose scope is
limited to the code
generated by the
Real-Time Workshop

The final three classes, shown in BitField, Define, and Struct Storage Classes
(Prior to Release 14) on page 4-48, specify the data structure or construct

used to represent the

data.

BitField, Define, and Struct Storage Classes (Prior to Release 14)

Class Data
Name Purpose Parameters Signals types Complex | Wide
BitField Embed Y Y Boolean N N
Boolean
data
in a named
bit field

Older Custom Storage Classes (Prior to Release 14)

BitField, Define, and Struct Storage Classes (Prior to Release 14) (Continued)

Class
Name

Purpose

Parameters

Signals

Data
types

Complex

Wide

Define

Represent
parameters
with a
#define
macro

Y

N

any

N

N

Struct

Embed
data in

a named
struct to
encapsulate
sets of data

any

Instance-Specific Attributes for Older Storage Classes
Some custom storage classes have attributes that are exclusive to

the class. These attributes are made visible as members of the

RTWInfo.CustomAttributes field. For example, the BitField class has a
BitFieldName attribute (RTWInfo.CustomAttributes.BitFieldName).

Additional Properties of Custom Storage Classes (Prior to Release 14) on

page 4-50 summarizes the storage classes with additional attributes, and the
meaning of those attributes. Attributes marked optional have default values
and may be left unassigned.

4-49

4 cusiom Storage Classes

Additional Properties of Custom Storage Classes (Prior to Release 14)

Storage Class
Name

Additional
Properties

Description

Optional
(has
default)

ExportToFile

FileName

String. Defines the name of the
generated header file within which
the global variable declaration should
reside. If unspecified, the declaration
is placed in model export.h by
default.

Y

ImportFromFile

FileName

String. Defines the name of the
generated header file which to be
used in #include directive.

ImportFromFile

IncludeDelimeter

Enumerated. Defines delimiter
used for filename in the #include
directive. Delimiter is either double
quotes (for example, #include
"vars.h") or angle brackets (for
example, #include <vars.h>). The
default is quotes.

BitField

BitFieldName

String. Defines name of bit field
in which data is embedded; if
unassigned, the name defaults to
rt_BitField.

Struct

StructName

String. Defines name of the struct
in which data is embedded; if
unassigned, the name defaults to
rt_Struct.

4-50

Older Custom Storage Classes (Prior to Release 14)

Assigning a Custom Storage Class to Data

You can create custom parameter or signal objects from the MATLAB
command line. For example, the following commands create a custom
parameter object p and a custom signal object s:

Simulink.CustomParameter
Simulink.CustomSignal

p
s

After creating the object, set the RTWInfo.CustomStorageClass and
RTWInfo.CustomAttributes fields. For example, the following commands
sets these fields for the custom parameter object p:

p.RTWInfo.CustomStorageClass = 'ExportToFile'
p.RTWInfo.CustomAttributes.FileName = 'testfile.h'

Finally, make sure that the RTWInfo.StorageClass property is set to Custom.
If you inadvertently set this property to some other value, the custom storage
properties are ignored.

Code Generation with Older Custom Storage Classes

The procedure for generating code with data objects that have a custom
storage class is similar to the procedure for code generation using Simulink
data objects that have built-in storage classes. If you are unfamiliar with this
procedure, see the discussion of Simulink data objects in the “Working with
Data Structures” section of the Real-Time Workshop documentation.

To generate code with custom storage classes, you must

1 Create one or more data objects of class Simulink.CustomParameter or
Simulink.CustomSignal.

2 Set the custom storage class property of the objects, as well as the
class-specific attributes (if any) of the objects.

3 Reference these objects as block parameters, signals, block states, or Data
Store memory.

When generating code from a model employing custom storage classes, make

sure that the Ignore custom storage classes option is not selected. This is
the default for Real-Time Workshop Embedded Coder.

4-51

4 cusiom Storage Classes

4-52

When Ignore custom storage classes is selected:

® Objects with custom storage classes are treated as if their storage class
attribute is set to Auto.

* The storage class of signals that have custom storage classes is not
displayed on the signal line, even if the Storage class option of the
Simulink Format menu is selected.

Ignore custom storage classes lets you switch to a target that does not
support CSCs, such as the generic real-time target (GRT), without having to
reconfigure your parameter and signal objects.

When using Real-Time Workshop Embedded Coder, you can control the
Ignore custom storage classes option with the check box in the Real-Time
Workshop pane of the Configuration Parameters dialog box.

If you are using a target that does not have a check box for this option (such as
a custom target) you can enter the option directly into the TLC options field
in the Real-Time Workshop pane of the Configuration Parameters dialog
box. The following example turns the option on:

-aIgnoreCustomStorageClasses=1

Compatibility Issues for Older Custom Storage
Classes

In Release 14, the full functionality of the Simulink.CustomSignal and
Simulink.CustomParameter classes was added to the Simulink.Signal
and Simulink.Parameter classes. You should consider replacing the use of
Simulink.CustomSignal and Simulink.CustomParameter objects by using
equivalent Simulink.Signal and Simulink.Parameter objects.

If you prefer, you can continue to use the Simulink.CustomSignal and
Simulink.CustomParameter classes in the current release. Note that the
following changes have been implemented in these classes:

¢ The Internal storage class has been removed from the enumerated values
of the RTWInfo.CustomStorageClass property. Internal storage class is
no longer supported.

Older Custom Storage Classes (Prior to Release 14)

® For the ExportToFile and ImportFromFile storage
classes, the RTWInfo.CustomAttributes.FileName and
RTWInfo.CustomAttributes.IncludeDelimeter properties
have been obsoleted and combined into a single property,
RTWInfo.CustomAttributes.HeaderFile. When specifying a header file,
include both the filename and the required delimiter as you want them to
appear in generated code, as in the following example:

myobj.RTWInfo.CustomAttributes.HeaderFile = '<myheader.h>";

® Prior to Release 14, user-defined CSCs were created by designing custom
packages that included the CSC definitions. This technique for creating
CSCs is obsolete; see “Creating Packages with CSC Definitions” on page
4-31 for a description of the current procedure, which is much simpler.

If you designed your own custom packages containing CSCs prior to
Release 14 you should convert them to Release 14 CSCs. The conversion
procedure is described in the next section, “Converting Older Packages to
Use CSC Registration Files” on page 4-53.

Converting Older Packages to Use CSC Registration Files

A Simulink data class package can be associated with one or more CSC
definitions. In Release 14, the linkage between a set of CSC definitions and
a package is formed when a CSC registration file (csc_registration.m)

is located in the package directory.

Prior to Release 14, user-defined CSCs were created by designing custom
packages that included the CSC definitions as part of the package.

The Simulink Data Class Designer supports conversion of older packages to
the use of CSC registration files. When such a package is selected in Simulink
Data Class Designer, a special conversion button is displayed on the Custom
Storage Classes pane. This button lets you invoke a conversion procedure;
you can then write out all files and directories required to define the package,
including a CSC registration file. To convert a package:

1 You should make a complete backup copy of the package directory before
converting the package. After backing up the directory, remove the @ prefix
from the backup directory name and make sure that the backup directory
is not on the MATLAB path.

4-53

4 cusiom Storage Classes

4-54

2 Open the Simulink Data Class Designer by typing the following command
at the MATLAB command prompt:

sldataclassdesigner

3 The Data Class Designer loads all packages that exist on the MATLAB
path. Select the package to be converted from the Package name menu.
Then, click OK.

4 If you want to store the converted package in a different directory than the
original package, enter the desired path in the Parent directory field.
This step is optional.

The figure below shows the package my converted package. The package
definition is stored in d:\work\testConversion.

Older Custom Storage Classes (Prior to Release 14)

ulink Data Class Designer 10l =|
rUser-defined package

Fackage name:
Imy_converted_package j [ey | Copy | Rename | Remaove |
Farent directory (location of @directory):
IF:IworIdtestCDnversion

Classes | Enumerated Property Types | Custom Storage Classes |

Class name:

IParameter j [ey | Copy | Rename | Remaove |

Derived from: [Simulink
[Create yaur own custam storage classes for this class

Froperies of this class {inherited properdies disabled):

j _IParameter

=

Froperty Name Froperty Type Factary Yalue (optional) [ey |
Path string ha -
5 |
RTWinfa = Uiknown= 7]]
Description string [~ M
DataType string R4l ~| Remove |

Class initialization {optional):

Insert Comments to AssistWriting Class Initializationl

h.RTWInfo = ECoderDemos.MyCustonRTHInfo;

|

% Initialize RTWInfo property Lo use custom storage classes:

I(I |>

|1

== Canfirm Changesl

Reload Packagesl

Help | Close |

5 Click on the Custom Storage Classes pane. The pane displays a message
indicating that the package contains obsolete CSC definitions, as shown in

this figure.

4-55

4 cusiom Storage Classes

4-56

imulink Data Class Designer

=10l x|

rUser-defined package

Fackage name:

Imy_converted_package j [ey Copy | Renamel Remaove |

Farent directory (location of @directory):

ID:Iwothte stConversion

Classes | Enumerated Property Types Custom Storage Classes

This package uses an obsolete mechanism for defining custom storage
clagses (CSCs). You can continue to use this mechanism in this release,
but you will not be able to take advantage ofthe latest C5C features
unless you convert this package to use a csc_registration file.

The conversion process performs the following aperations on this package:

- Remaves classes derived from Simulink. CustomBTWinfo.
Az a result, all parameter classes in this package will have the same
list of CSCs and the current CSC factary values will be discarded.
The same will he true for all signal classes in this package.)

- Removes enumerated propery types associated with custom storage classes.

- Comments out the manual setting ofthe RTwWInfo property in the class
initialization code for the Simulink data classes in this package.

When you write out this package (after conversion) a csc_registration file
will be generated with the definitions of all ofthe CECs from this package.

You can modify your C5C definitions using the custom storage class designer.
== cscdesigner

Convert Package To Use CEC Registration File |

Options for custom storage classes:

MName TLC File to Use | Attributes Class (optional) Edit All TLC Filesl
Advancedstud--- Mone selected - jlmy_convened_packag...

| a
— 1 EditSelected |
Arplifdariant— Mone selected - jl Mone selected —]
b

Fasiccirct |- Mone selected — ¥ [[— Mone selected — x|

Click 'Help' far mare information about custom storage classes.

== Canfirm Changesl Reload Packagesl

Help | Close |

Below the message text, the pane also contains a button captioned Convert
Package to Use CSC Registration File. This button invokes a script
that converts the package to use a CSC registration file.

Note that this button does not actually create the CSC registration file.
That happens when the package files are written out, as described below.

6 Click Convert Package to Use CSC Registration File. After conversion,
the appearance of the pane changes, as shown below.

Older Custom Storage Classes (Prior to Release 14)

= J: Simulink Data Class Designer ;Iglll

rUser-defined package

Fackage name:

Imy_converted_package j [ey Copy | Rename | Remaove |

Farent directory (location of @directory):

IF:IworIdTe stConversion

Classes | Enumerated Property Types ~ Custom Storage Classes

Custom storage classes give users complete contral over the appearance
of symhols in the code generated from Real-Time YWarkshaop.

To define custom storage classes for this package:
1. Belect the following option for the relevant parameter ! signal classes.
"Create your own custom storage classes for this class"
2. Belect"== Confirm Changes" and write out this package.
3. Close the Simulink data class designer.
4. Define your C5Cs using the custam storage class designer.
== cscdesigner

Click ‘Help' far mare information about customn storage classes.

== Canfirm Changesl Reload Packagesl

Help | Close |

7 Click Confirm Changes. In the Confirm Changes pane, select the
package you converted. Add the parent directory to the MATLAB path if
necessary. Then, click Write Selected.

8 Click Close.

9 You can now view and edit the CSCs belonging to your package in the
Custom Storage Class Designer. To do so, type the following command at
the MATLAB prompt:

cscdesigner

Note You must launch the CSC Designer with the -advanced motion to
edit the attributes of old CSCs because they are defined with user-defined
TLC files.

4-57

4 cusiom Storage Classes

4-58

The Custom Storage Class Designer loads all packages that have a CSC

registration file.

10 Select your converted package from the Select package menu.

The figure below shows the Custom Storage Class Designer displaying
the CSCs defined in the package my converted_package. See “Designing
Custom Storage Classes” on page 4-15 for a description of the operation of

the Custom Storage Class Designer.

E! Custom Storage Class Designer

Select package: I my_converted_package - l

Custom Storage Class I Memory Section |

— Walidation result

Last validation succeeded.

—Pzeudocode pr

Custom storage class definitions: iz
AdvancedStct Copy
BaspStrugt Up
Amplify ariant
Biagifariant Down
Irveariant
Mutex Remove
FriorityCeilirn -

i : W alidate

Header file:

General IEomments |

M ame: IDefauIt

Type: I Unstructured

LI ¥ | For parameters W | For signals

Memory section:l [refault VI [rata scope:l Exported VI
Diata initialization:l Auto VI Diata access:l Direct VI

Header file: I Specify =l |

No header file iz specified.
exported wia the generated mo

Filename: csc_registration.m

Location: F\wark\testConversion\@my_converted_package

Save

Type definition: Not applicah

Declaration:

£* CEC declaration comment ge
extern DATATYPE DATANAME [DIME

Definition:

£* CEC definition comment gen
DATATYPE DATANAME [DIMENZION] ;

< | i

oK

Lancel | Help | Apply

Older Custom Storage Classes (Prior to Release 14)

Note All user-defined CSCs created prior to Release 14 are defined with
their own TLC code. As a result, after conversion, the Type is set to Other
(as opposed to Unstructured or FlatStructure). See “Defining Advanced
Custom Storage Class Types” on page 4-35 for more information.

11 Restart MATLAB to ensure that your converted package is accessible.

4-59

4 cusiom Storage Classes

4-60

Memory Sections

Introduction to Memory Sections
(p. 5-2)

Requirements for Defining Memory
Sections (p. 5-4)
Defining Memory Sections (p. 5-6)

Applying Memory Sections (p. 5-10)

Examples of Generated Code with
Memory Sections (p. 5-18)

Memory section capabilities,
an online demo, and sources of
additional information.

Requirements you must meet before
you can define memory sections.

Shows you how to define memory
sections for use in any context.

Techniques for using memory
sections to apply pragmas to
custom storage classes, model-level
functions and internal data, and
atomic subsystems.

Typical memory section definitions
and the code that results when you
use them.

5 Memory Sections

Introduction to Memory Sections

® “Overview” on page 5-2
e “Memory Sections Demo” on page 5-2

¢ “Additional Information” on page 5-2

Overview

Real-Time Workshop Embedded Coder provides a memory section capability
that allows you to insert comments and pragmas into the generated code for

¢ Data in custom storage classes

Model-level functions

Model-level internal data

Subsystem functions

Subsystem internal data
Pragmas inserted into generated code can surround

® A contiguous block of function or data definitions
¢ Each function or data definition separately

When pragmas surround each function or data definition separately, the text
of each pragma can contain the name of the definition to which it applies.

Memory Sections Demo

To see a demo of memory sections, type rtwdemo_memsec in the MATLAB
Command Window.

Additional Information
See the following for additional information relating to memory sections:

¢ Simulink data types, packages, data classes, and data objects:

= “Working with Data” in the Simulink documentation

Introduction to Memory Sections

¢ Real-Time Workshop data structures and storage classes:

= “Working with Data Structures” in the Real-Time Workshop
documentation

¢ Real-Time Workshop Embedded Coder custom storage classes:

= Chapter 4, “Custom Storage Classes” in the Real-Time Workshop
Embedded Coder documentation

® Fine-tuned optimization of generated code for functions or data:

= The Real-Time Workshop Target Language Compiler documentation

5 Memory Sections

Requirements for Defining Memory Sections

Before you can define memory sections, you must do the following:

1 Set the Simulink model’s code generation target to an embedded target
such as ert.tlc.

2 If you need to create packages, specify package properties, or create classes,
including custom storage classes, choose Tools > Data Class Designer
in the model window.

A notification box appears that states Please Wait ... Finding Packages.
After a brief pause, the Simulink Data Class Designer appears:

) simulink Data Class Designer =IOl

[User-defined package

Package name;

SimulinkDemos | ey Copy Rename | Rermowe |

Parent directory {location of @directory):

IE ‘matiabltoolboasimulinklsimdermnas

Classes | Enumerated PropertyTypes | Custom Storage Classes |

Class name,
Signal hal Mews | Cuopy | Rename | Remuove |
Derived from: [Simulink =] Jstanal |

™ Create your own custam storage classes for this class
Properties of this class (inherited properties dizabled)

Property Name Property Type Factory Yalue (optional) Mew |
higrarchySimStatus | Sting | = un
Path elring | ||
RTWinfo = Unknown— = CEm
Description string | Rermove
DataType st |
e Toute =i =1
Class initialization (optional): Inzert Comments to Assist Writing Class Inina\izalmnl
|5 Mo initialization code. a
k| I

== Confirm Changes Reload Packages
Help Close

Instructions for using the Simulink Data Class Designer appear in
“Working with Data” in the Simulink documentation. See also the
instructions that appear when you click the Custom Storage Classes tab.

3 If you need to specify custom storage class properties,

Requirements for Defining Memory Sections

a Choose View > Model Explorer in the model window.

The Model Explorer appears.

b Choose Tools > Custom Storage Class Designer in the Model
Explorer window.

A notification box appears that states Please Wait ... Finding
Packages. After a brief pause, the notification box closes and the
Custom Storage Class Designer appears.

¢ Select the Custom Storage Class tab. The Custom Storage Class
pane looks like this:

=] custom Storage Class Designer x|
— Validation resul 4]
Select package:
Last walidation sucoesded
Custom Storage Class | Memory Section |
Custom storage class defiitions: New
Dicfauit —
BitField Cory
Const iy
Yolatle
Constiialatie Down
Define ———— || Pseudocodem
Remave
ExportTaFic
ImportFronFie Valdate Header file:
Shuct Mo header file iz specified. By defaule, data is
GetSet exported via the generated model.h file.
General Iﬁﬂmmenls Type definition: Hot spplicable.
Hame: [Diefault
Type:[Dreiretoned =1 Forparameters ¥ For signals Declaration:
[r— sect\or\lDefau\l = Dalascope]Exponed = #* CEC declararion comment generaced by default
extern DATATYPE DATANAME [DIMENSION];
Datainitialzation: [£.io 7] Dataacoess [Direct |
Header fis:[Grecily [Definition:
F* CEC definition comment generated by default */
DATATYPE DATANAME [DIMENSION]
Filename: csc_registration.m
’7Lucahnn E \matlabbtoolbortsimulink'simulink \@Simulink Save I 15l |
o | e | Hee | e |

d Use the Custom Storage Class pane as needed to specify custom
storage class properties. Instructions for using this pane are in
“Designing Custom Storage Classes” on page 4-15.

5-5

5 Memory Sections

Defining Memory Sections

“Editing Memory Section Properties” on page 5-6
® “Specifying the Memory Section Name” on page 5-7

* “Specifying a Qualifier for Custom Storage Class Data Definitions” on
page 5-8

* “Specifying Comment and Pragma Text” on page 5-8
¢ “Surrounding Individual Definitions with Pragmas” on page 5-9

¢ “Including Identifier Names in Pragmas” on page 5-9

Editing Memory Section Properties

After you have satisfied the requirements in “Requirements for Defining
Memory Sections” on page 5-4, you can define memory sections and specify
their properties. To create new memory sections or specify memory section
properties,

1 Choose View > Model Explorer in the model window.

The Model Explorer appears.

2 Choose Tools > Custom Storage Class Designer in the Model Explorer
window.

A notification box appears that states Please Wait ... Finding Packages.
After a brief pause, the notification box closes and the Custom Storage
Class Designer appears.

3 Click the Memory Section tab of the Custom Storage Class Designer. The
Memory Section pane looks like this:

Defining Memory Sections

=] Custom Storage Class Designer: x|
— Walidation resuit -
EEcs P sl Simuink j‘ Last validation succeeded.
Custom Storage Class | 7|
Memory section definiions New
Default
MemConst Cony
Merivelste e
MemCanstvalatie
Do
—Pseudacode preview
Hemove
Vaidate Header file: Not applicable.
~Memary sectiar: Type definition: Not applicable.
Hame: [Teraut
I~ [5 const I~ [5 volatile Qualifier Declaration:
Comment: extern DATATYPE DATANAME;
Desinition:
DATATYPE DATANAME;
Pragma sumounds: | All varizbles <
[T
Post-memory-section piagna
Filename: csc_registration.m
’7 Location: E:\matlabtoolboxsimulink ysimulink s @S imulink. Save —
ok | cameel | W | e |

The rest of this section describes the use of the Memory section subpane
on the lower left. For descriptions of the other subpanes, instructions for
validating memory section definitions, and other information, see “Editing
Memory Section Definitions” on page 4-27.

Specifying the Memory Section Name

To specify the name of a memory section, use the Name field. A memory
section name must be a legal MATLAB identifier.

5-7

5 Memory Sections

Specifying a Qualifier for Custom Storage Class Data
Definitions
To specify a qualifier for custom storage class data definitions in a memory

section, enter the components of the qualifier below the Name field.

® To specify const, check Is const.

* To specify volatile, check Is volatile.

® To specify anything else (e.g., static), enter the text in the Qualifier field.
The qualifier will appear in generated code with its components in the same

left-to-right order in which their definitions appear in the dialog box. A
preview appears in the Pseudocode preview subpane on the lower right.

Note Specifying a qualifier affects only custom storage class data definitions.
The code generator omits the qualifier from any other category of definition.

Specifying Comment and Pragma Text

To specify a comment, pre-pragma, or post-pragma for a memory section,
enter the text in the appropriate edit boxes on the left side of the Custom
Storage Class Designer. These boxes accept multiple lines separated by
ordinary Returns.

Defining Memory Sections

Surrounding Individual Definitions with Pragmas

If the Pragma surrounds field for a memory section specifies Each
variable, the code generator will surround each definition in a contiguous
block of definitions with the comment, pre-pragma, and post-pragma defined
for the section. This behavior occurs with all categories of definitions.

If the Pragma surrounds field for a memory section specifies A1l
variables, the code generator will insert the comment and pre-pragma for the
section before the first definition in a contiguous block of custom storage class
data definitions, and the post-pragma after the last definition in the block.

Note Specifying A11 variables affects only custom storage class data
definitions. For any other category of definition, the code generator surrounds
each definition separately regardless of the value of Pragma surrounds.

Including Identifier Names in Pragmas

When pragmas surround each separate definition in a contiguous block, you
can include the string %<identifier> in a pragma. The string must appear
without surrounding quotes.

® When %<identifier> appears in a pre-pragma, the code generator will
substitute the identifier from the subsequent function or data definition.
® When %<identifier> appears in a post-pragma, the code generator will

substitute the identifier from the previous function or data definition.

You can use %<identifier> with pragmas only when pragmas to surround
each variable. The Validate phase will report an error if you violate this rule.

Note Although %<identifier> looks like a TLC variable, it is not: it is just
a keyword that directs the code generator to substitute the applicable data
definition identifier when it outputs a pragma. TLC variables cannot appear
in pragma specifications in the Memory Section pane.

5 Memory Sections

Applying Memory Sections

® “Assigning Memory Sections to Custom Storage Classes” on page 5-10

* “Applying Memory Sections to Model-Level Functions and Internal Data”
on page 5-11
* “Applying Memory Sections to Atomic Subsystems” on page 5-15

Assigning Memory Sections to Custom Storage

Classes
To assign a memory section to a custom storage class,

1 Choose View > Model Explorer in the model window.

The Model Explorer appears.

2 Choose Tools > Custom Storage Class Designer in the Model Explorer
window.

A notification box appears that states Please Wait ... Finding Packages.
After a brief pause, the notification box closes and the Custom Storage

Class Designer appears.

3 Select the Custom Storage Class tab. The Custom Storage Class
pane looks like this:

5-10

Applying Memory Sections

5] custom Storage Class Designer x|
— Validation result -]
Bk pelesE Lot validation succeeded
Custom Storage Class | Memary Section |
Custom storage class defiritians: Hew
Diefault —
BitField Copy
Const i
Velatie _—
Constvolatie Davn
Define el
ExponToFie
ImportFromFile Validate Header file:
Stiuct Mo header file is specified. By default, dava is
GetSet exported wia the generated model.h file.
General ICOWﬂEnts Type definition: Hot applicable.
Name: [Diefauit
Type:[Unstructured | ¥ For parameters 17 For signals Declaration:
Mematy section: [Defaull =] Data scope: [Expoited =] ||| |/7 C%C declaration comment gemerated by default
extern DATATYDPE DATANAME [DIMENSION]:
Data iilialzation: [Aut0 | Data acoess [Diect k|
Heade: fie: [Speciy = T Definition:
#* CSC definition comment generated by default */
DATATYPE DATANAME [DIMENSION],
Filename: cse_registiation.m
’7Locauor\:E\mal\ab\loo\box\simuhr\k\simuhnk\@ﬁ\muhnk Save [1] [15 |
oK | Cancel | Help | Lpply |

4 Select the desired custom storage class in the Custom storage class
definitions pane.

5 Select the desired memory section from the Memory section pull-down.

6 Click Apply to apply changes to the open copy of the model; Save to apply
changes and save them to disk; or OK to apply changes, save changes, and
close the Custom Storage Class Designer.

Generated code for all data definitions in the specified custom storage class
will be enclosed in the pragmas of the specified memory section. The pragmas
can surround contiguous blocks of definitions or each definition separately,
as described in “Surrounding Individual Definitions with Pragmas” on page
5-9. For more information, see “Creating Packages with CSC Definitions”

on page 4-31.

Applying Memory Sections to Model-Level Functions
and Internal Data

When using Real-Time Workshop Embedded Coder, you can apply memory
sections to the following categories of model-level functions:

5-11

5 Memory Sections

Function Category Function Subcategory

Initialize/Terminate functions Initialize/Start
Terminate

Execution functions Step functions

Run-time initialization

Derivative

Enable

Disable

When using Real-Time Workshop Embedded Coder, you can apply memory
sections to the following categories of internal data:

Data Category Data Definition Data Purpose
Constants model cP Constant parameters
model cB Constant block I/0
model_Z Zero representation
Input/Output model U Root inputs
model_Y Root outputs
Internal data model B Block I/0
model D D-work vectors
model M Run-time model
model_Zero Zero-crossings
Parameters model P Parameters

Memory section specifications for model-level functions and internal data
apply to the top level of the model and to all subsystems except atomic
subsystems that contain overriding memory section specifications, as
described in “Applying Memory Sections to Atomic Subsystems” on page 5-15.

To specify memory sections for model-level functions or internal data,

5-12

Applying Memory Sections

1 Open the Model Explorer and select Configuration (Active)
> Real-Time Workshop > General. (Alternatively, choose
Simulation > Configuration Parameters in the model window.)

2 Ensure that the System target file is an ERT target, such as ert.tlc.

5 Model Cxplorer =1oix
Eio Eot Yiw ook Aod Hebo _
D s mmx EHEE%EF 00 Do/ 46| verm= A
|| Sty [t Fiame =] Mame: [i Sesch
Mol Hisvarchy Conlenty of; vip/Configuration Heal Time Workshop
23Sl Root Gt-a-d|M]W|mmm|m|Imduo|MSMo|1«vdm|D¢eJ:
?H'“"“'“H'F:;u ® Sohwr] Target selecion
‘ﬁf-ﬂd\wm L
& v : g"‘"""‘“""‘ St gt o [l 5 Higwren
[Model W pace & Disgrosics Langrasge. [c =]
z' & Haichose yrees Desighon: Reak T, E e |
Code bor wip & Modsl Rlak
§ saticn tor vitn il | -~ Documartstion.
Moo Inda I~ Geesbe HTML sepont
IF L ol
I~ I
Dhald procass
TLE options:
-~ Makafls conlipuastion
' Gerniote makefle
Make command [ratie_rwe
Template makafle [or_detua 1t
Custom sorage clay
I Igrue camshinn theangm clasns:
I~ Gonerse codo ery o |
al | |
Conterts | Seach Feay Eoel | e | |
:

5-13

5 Memory Sections

3 Select the Memory Sections tab. The Memory Sections pane looks
like this:

Real-Time Workzhop

1k

Code I Debug I Interfface | Code Style | Templates | DataPlacement | Data Type Replacement |

—Package containing rmemary sections for model data and function
Package:l - Mane - j Refresh package Iistl
—Memory sections for model functions and subsystem default:
IritializesT erminate:l Drefault LI
E zecution: I Drefault LI
—Mermory zections for model data and subspstem defaults
Constants: I Default ;I
Inputz/Outputs: I Default ;I
Internal data: I Default LI
Parameters: I Default LI

—Walidation results

Package and memany sections found.

4 Initially, the Package field specifies - - -None- - - and the pull-down lists
only built-in packages. If you have defined any packages of your own, click
Refresh package list. This action adds all user-defined packages on your
search path to the package list.

5 In the Package pull-down, select the package that contains the memory
sections that you want to apply.

6 In the pull-down for each category of internal data and model-level
function, specify the memory section (if any) that you want to apply to that
category. Accepting or specifying Default omits specifying any memory
section for that category.

7 Click Apply to save any changes to the package and memory section
selections.

5-14

Applying Memory Sections

Applying Memory Sections to Atomic Subsystems

For any atomic subsystem whose generated code format is Function or
Reusable Function, you can specify memory sections for functions and
internal data that exist in that code format. Such specifications override any
model-level memory section specifications. Such overrides apply only to the
atomic subsystem itself, not to any subsystems within it. Subsystems of an
atomic subsystem inherit memory section specifications from the top-level
model, not from the containing atomic subsystem.

To specify memory sections for an atomic subsystem,

1 Right-click the subsystem in the model window.

2 Choose Subsystem Parameters from the context menu. The Function
Block Parameters: Subsystem dialog box appears.

3 Ensure that Treat as atomic unit is checked. Otherwise, you cannot
specify memory sections for the subsystem.

For an atomic system, you can use the Real-Time Workshop system
code field to control the format of the generated code.

4 Ensure that Real-Time Workshop system code is Function or Reusable
function. Otherwise, you cannot specify memory sections for the

subsystem.

5 Ifthe code format is Function and you want separate data, check Function
with separate data.

5-15

5 Memory Sections

The Real-Time Workshop pane now shows all applicable memory
section options. The available options depend on the values of Real-Time
Workshop system code and the Function with separate data check
box. When the former is Function and the latter is checked, the pane looks
like this:

E! Function Block Parameters: Subsystem 5'

—Subsystem

Select the settings for the subsystem block,

|v Shaow port labels

Read/wWiite permizgsions: I Readwrite LI

Marne of enor callback function:

Permit hierarchical resolution |AII x|

¥ Treat as atomic unit
I~ Minimize algebraic loop occunences

Sample time [-1 far inherited]:

E

Fieal-Time w'orkshop system code: | Function LI
Real-Time ‘Warkshop function name options: I Auto LI
Fieal-Time ‘Warkshop file name options: I At LI
¥ Function with separate data

Memary section for intializeteminate functions:l Inherit from maodel LI
temory section for execution lunctions:l Inherit from model LI
temary section for constants:l Inherit from model LI
Memary section for internal data: I Inherit from rmadel LI
temory section for parameters:l Inherit from model LI

’TI Cancel | Help ™ | Apply |

6 In the pull-down for each available definition category, specify the memory
section (if any) that you want to apply to that category.

e Selecting Inherit from model inherits the corresponding selection (if
any) from the model level (not any parent subsystem).

¢ Selecting Default specifies that the category has no associated memory
section, overriding any model-level specification for that category.

5-16

Applying Memory Sections

7 Click Apply to save changes, or OK to save changes and close the dialog
box.

Caution If you use Build Subsystem to generate code for an atomic
subsystem that specifies memory sections, the code generator ignores the
subsystem-level specifications and uses the model-level specifications instead.
The generated code is the same as if the atomic subsystem specified Inherit
from model for every category of definition. For information about Build
Subsystem, see “Generating Code and Executables from Subsystems”.

5-17

5 Memory Sections

Examples of Generated Code with Memory Sections

“Sample ERT-Based Model with Subsystem” on page 5-18

“Model-Level Data Structures” on page 5-19

“Model-Level Functions” on page 5-21

® “Subsystem Function” on page 5-22

Sample ERT-Based Model with Subsystem

The next figure shows an ERT-based Simulink model that defines one
subsystem, and the contents of that subsystem.

EImySample _|E||i| E!n1ySampIe,.-"mySuhsystem _|El|ﬂ
File Edit Wiew Simulation Format Tools Help Fil= Edit Wiew Simulation Format Tools Help

O eE& BB 4|0 % DFEH&| & BRBB|Es 402

1
[S >
In = Outd In) Outd
Unit Delay Gain
mySubsystem
F|100% | [FixedstepDiscrete 7| F/100% [[|FixedstepDiscrete 7

Assume that the subsystem is atomic, the Real-Time Workshop system
code is Reusable function, memory sections have been created and
assigned as shown in the next two tables, and all data memory sections
specify Pragma surrounds to be Each variable.

Model-Level Memory Section Assignments and Definitions

Section Section Field Name | Field Value

Assignment Name

Input/Output MemSect1 Pre-pragma #pragma IO_begin
Post-pragma | #pragma I0-end

5-18

Examples of Generated Code with Memory Sections

Model-Level Memory Section Assignments and Definitions (Continued)

Section Section Field Name | Field Value
Assignment Name
Internal data MemSect2 Pre-pragma #pragma InData-begin(%<identifier>)

Post-pragma | #pragma InData-end

Parameters MemSect3 Pre-pragma #pragma Parameters-begin

Post-pragma | #pragma Parameters-end

Initialize/ MemSect4 Pre-pragma #pragma InitTerminate-begin
Loz Post-pragma | #pragma InitTerminate-end

Execution MemSect5 Pre-pragma #pragma ExecFunc-begin(%<identifier>)
functions

Post-pragma | #pragma ExecFunc-begin(%<identifier>)

Subsystem-Level Memory Section Assignments and Definitions

Section Section Field Name | Field Value
Assignment Name
Execution MemSect6 Pre-pragma #pragma DATA SEC(%<identifier>,
functions "FAST_RAM")
Post-pragma

Given the preceding specifications and definitions, the code generator would
create the following code, with minor variations depending on the current
version of the Target Language Compiler.

Model-Level Data Structures
#pragma IO-begin
ExternalInputs_mySample mySample_U;
#pragma IO-end

#pragma IO-begin

ExternalOutputs_mySample mySample_Y;
#pragma IO0-end

5-19

5 Memory Sections

#pragma InData-begin(mySample_ B)
BlockIO_mySample mySample B;
#pragma InData-end

#pragma InData-begin(mySample_ DWork)
D _Work_mySample mySample_ DWork;
#pragma InData-end

#pragma InData-begin(mySample M)
RT_MODEL_mySample mySample M_;
#pragma InData-end

#pragma InData-begin(mySample M)
RT_MODEL_mySample *mySample M = &mySample M ;
#pragma InData-end

f#fpragma Parameters-begin

Parameters_mySample mySample P = {
0.0 , {2.3}

b

#pragma Parameters-end

5-20

Examples of Generated Code with Memory Sections

Model-Level Functions

#pragma ExecFunc-begin(mySample_step)

void mySample step(void)

{
real T rtb_UnitDelay;
rtb_UnitDelay = mySample_DWork.UnitDelay DSTATE;
mySubsystem(rtb_UnitDelay, &mySample_B.mySubsystem;,

(rtP_mySubsystem *) &mySample_ P.mySubsystem);

mySample_Y.Out1_o = mySample B.mySubsystem.Gain;
mySample DWork.UnitDelay DSTATE = mySample_U.In1;

}
#pragma ExecFunc-end(mySample_step)

#pragma InitTerminate-begin
void mySample initialize(void)

{
rtmSetErrorStatus(mySample M, (const char_T *)0);
{
((real_T*)&mySample_ B.mySubsystem.Gain)[0] = 0.0;
}

mySample DWork.UnitDelay DSTATE

mySample U.In1 = 0.0;

mySample Y.Out1_o = 0.0;

mySample DWork.UnitDelay DSTATE
}

#pragma InitTerminate-end

0.0;

mySample_P.UnitDelay_ XO;

5-21

5 Memory Sections

Subsystem Function

Because the subsystem specifies a memory section for execution functions
that overrides that of the parent model, subsystem code looks like this:

/* File: mySubsystem.c */

#pragma DATA_SEC(mySubsystem, FAST_RAM)
void mySubsystem(real_T rtu_Int,
rtB_mySubsystem *1localB,

rtP_mySubsystem *1localP)

{

localB->Gain = rtu_In1 * localP->Gain_Gain;

}

If the subsystem had not defined its own memory section for execution
functions, but inherited that of the parent model, the subsystem code would
have looked like this:

/* File: mySubsystem.c */

f#fpragma ExecFunc-begin(mySubsystem)
void mySubsystem(real_T rtu_Int,
rtB_mySubsystem *localB,
rtP_mySubsystem *1localP)

{

localB->Gain = rtu_In1 * localP->Gain_Gain;

}

#ipragma ExecFunc-end(mySubsystem)

5-22

Advanced Code Generation
Techniques

Introduction (p. 6-3) Overview of this chapter.

Code Generation with User-Defined How to map your own data type

Data Types (p. 6-5) definitions to Simulink built-in data
types.

Customizing the Target Build Explains the build process hook

Process with the STF_make_rtw mechanism and how to use an

Hook File (p. 6-9) STF_make_rtw_hook.m hook file to
modify the build process.

Customizing the Target Build Explains how to use the

Process with sl _customization.m Simulink customization file

(p. 6-17) sl_customization.m to register

installation-specific hook functions
to be invoked during the build
process.

Auto-Configuring Models for Code How to use the

Generation (p. 6-22) STF_make_rtw_hook.m hook
file and supporting utilities to
automate the configuration of a
model during the code generation

process.
Generating Efficient Code with Describes auto-configuring versions
Optimized ERT Targets (p. 6-26) of the ERT target that are optimized

for fixed-point or floating-point code
generation.

6 Advanced Code Generation Techniques

Custom File Processing (p. 6-34)

Optimizing Your Model with
Configuration Wizard Blocks and
Scripts (p. 6-61)

Replacement of STF_rtw_info_hook
Mechanism (p. 6-75)

Optimizing Task Scheduling for
Multirate Multitasking Models on
RTOS Targets (p. 6-76)

Customizing generated code with
template files and the high-level
code template API.

How to use Configuration Wizard
blocks and scripts to configure and
optimize code generation options
quickly and easily.

Use of the STF_make_rtw_hook
hook file mechanism for specifying
target-specific characteristics

for code generation has been
supplanted by the Hardware
Implementation pane of the
Configuration Parameters dialog
box. Read this section if you have
created an STF_make_rtw_hook file
for use with a custom target, prior to
MATLAB Release 14.

Use the rmStepTask macro to
optimize task scheduling for RTOS
targets.

Introduction

Introduction

This chapter describes advanced code generation features and techniques
supported by Real-Time Workshop Embedded Coder. These features fall into
several categories:

o User-defined data types: How to use Simulink.NumericType,
Simulink.StructType and other data type objects to map your own data
type definitions to Simulink built-in data types.

® Model configuration: Several sections describe features that support
automatic (as opposed to manual) configuration of model options for code
generation. The information in each of these sections builds upon the
previous section.

= “Customizing the Target Build Process with the STF_make_rtw
Hook File” on page 6-9 describes the general mechanism for adding
target-specific customizations to the build process.

= “Auto-Configuring Models for Code Generation” on page 6-22 shows how
to use this mechanism (along with supporting utilities) to set model
options affecting code generation automatically.

= A similar mechanism is used by two special versions of the ERT target,
optimized for fixed-point and floating-point code generation. These are
described in “Generating Efficient Code with Optimized ERT Targets”
on page 6-26.

= “Optimizing Your Model with Configuration Wizard Blocks and
Scripts” on page 6-61 describes a simpler approach to automatic model
configuration. A library of Configuration Wizard blocks and scripts is
provided to let you configure models quickly for common scenarios; you
can also create your own scripts with minimal M-file programming.

® Custom code generation: These features let you directly customize
generated code by creating template files that are invoked during the TLC
code generation process. Basic knowledge of TLC is required to use these
features.

= “Custom File Processing” on page 6-34 describes a flexible and powerful
TLC API that lets you emit custom code to any generated file (including
both the standard generated model files and separate code modules).

6 Advanced Code Generation Techniques

= “Generating Custom File Banners” on page 6-55 describes a simple
way to generate file banners (useful for inserting your organization’s
copyrights and other common information into generated files).

Backward compatibility issues: Read “Optimizing Your Model with
Configuration Wizard Blocks and Scripts” on page 6-61 if you have created
an STF_rtw_info_hook file for use with a custom target, prior to MATLAB
Release 14. The STF_rtw_info_hook hook file mechanism for specifying
target-specific characteristics for code generation has been supplanted by
the simpler and more powerful Hardware Implementation pane of the
Configuration Parameters dialog box.

Code Generation with User-Defined Data Types

Code Generation with User-Defined Data Types

® “Overview” on page 6-5

® “Specifying Type Definition Location for User-Defined Data Types” on
page 6-6

e “Using User-Defined Data Types for Code Generation” on page 6-8

Overview

Real-Time Workshop Embedded Coder supports use of user-defined data type
objects in code generation. These include objects of the following classes:

® Simulink.AliasType
® Simulink.Bus
® Simulink.NumericType

® Simulink.StructType

For information on the properties and usage of these data object classes,
see Simulink.AliasType, Simulink.Bus, Simulink.NumericType, and
Simulink.StructType in the “Data Object Classes” section of the Simulink
Reference documentation. For general information on creating and using
data objects, see the “Working with Data Objects” section of the Simulink
documentation

In code generation, you can use user-defined data objects to

® Map your own data type definitions to Simulink built-in data types, and
specify that your data types are to be used in generated code.

® Optionally, generate #include directives specifying your own header files,
containing your data type definitions. This technique lets you use legacy
data types in generated code.

In general, code generated from user-defined data objects conforms to the
properties and attributes of the objects as defined for use in simulation.
When generating code from user-defined data objects, the name of the object
is the name of the data type that is used in the generated code. Exception:
for Simulink.NumericType objects whose IsAlias property is false, the

6 Advanced Code Generation Techniques

name of the functionally equivalent built-in or fixed-point Simulink data
type is used instead.

Note The names of data types defined using Simulink.AliasType objects
are preserved in the generated code only for installations licensed for
Real-Time Workshop Embedded Coder.

Specifying Type Definition Location for User-Defined
Data Types

When a model uses Simulink.DataType and Simulink.Bus objects,
corresponding typedefs are needed in code. Both Simulink.DataType and
Simulink.Bus objects have a HeaderFile property that controls the location
of the object’s typedef. Setting a HeaderFile is optional and affects code
generation only.

Omitting a HeaderFile Value

If the HeaderFile property for a Simulink.DataType or Simulink.Bus object
is left empty, a generated typedef for the object appears in the generated file
model_types.h.

Example. For a Simulink.NumericType object named myfloat with a
Category of double and no HeaderFile property specified, model types.h in
the generated code contains:

typedef real T myfloat;

Specifying a HeaderFile Value

If the HeaderFile property for a Simulink.DataType or Simulink.Bus object
is set to a string value,

¢ The string must be the name of a header file that contains a typedef for
the object.

® The generated file model types.h contains a #include that gives the
header file name.

Code Generation with User-Defined Data Types

You can use this technique to include legacy or other externally created
typedefs in generated code. When the generated code compiles, the specified
header file must be accessible on the build process include path.

6 Advanced Code Generation Techniques

6-8

HeaderFile Property Syntax. The HeaderFile property should include the
desired preprocessor delimiter ("" or '<>"'), as in the following examples.

This example:

myfloat.HeaderFile = '<legacy_types.h>'

generates the directive:

#include <legacy_types.h>

This example:

myfloat.HeaderFile = '"legacy_types.h>"'

generates the directive:

#include "legacy_types.h"

Using User-Defined Data Types for Code Generation
To specify and use user-defined data types for code generation:

1 Create a user-defined data object and configure its properties, as described
in the “Working with Data Objects” section of the Simulink documentation.

2 If you specified the HeaderFile property, copy the header file to the
appropriate directory.

3 Set the output data type of selected blocks in your model to the user-defined
data object. To do this, set the Data type parameter of the block to
Specify with dialog. Then, enter the object name in the Output data
type parameter.

4 The specified output data type propagates through the model and variables
of the user-defined type are declared as required in the generated code.

Customizing the Target Build Process with the STF_make_rtw Hook File

Customizing the Target Build Process with the
STF_make_rtw Hook File

e “Overview” on page 6-9

¢ “File and Function Naming Conventions” on page 6-9

¢ “STF_make_rtw_hook.m Function Prototype and Arguments” on page 6-11
e “Applications for STF_make_rtw_hook.m” on page 6-15

¢ “Using STF_make_rtw_hook.m for Your Build Procedure” on page 6-16

Overview

The build process lets you supply optional hook files that are executed at
specified points in the code-generation and make process. You can use hook
files to add target-specific actions to the build process.

This section describes an important M-file hook, generically referred to as
STF_make_rtw_hook.m, where STF is the name of a system target file, such as
ert or mytarget. This hook file implements a function, STF_make_rtw_hook,
that dispatches to a specific action, depending on the hookMethod argument
passed in.

The build process automatically calls STF_make_rtw_hook, passing in the
correct hookMethod argument (as well as other arguments described below).
You need to implement only those hook methods that your build process
requires.

File and Function Naming Conventions

To ensure that STF_make_rtw_hook is called correctly by the build process,
you must ensure that the following conditions are met:

® The STF_make_rtw_hook.m file is on the MATLAB path.

¢ The filename is the name of your system target file (STF), appended to
the string _make_rtw_hook.m. For example, if you were generating code
with a custom system target file mytarget.tlc, you would name your
STF_make_rtw_hook.m file to mytarget_make_rtw_hook.m. Likewise, the

6 Advanced Code Generation Techniques

hook function implemented within the file should follow the same naming
convention.

¢ The hook function implemented in the file follows the function prototype
described in the next section.

6-10

Customizing the Target Build Process with the STF_make_rtw Hook File

STF_make_rtw_hook.m Function Prototype and

Arguments
The function prototype for STF_make_rtw_hook is

function STF_make_rtw_hook (hookMethod, modelName, rtwRoot, templateMakefile,
buildOpts, buildArgs)

The arguments are defined as:

® hookMethod: String specifying the stage of build process from which the
STF_make_rtw_hook function is called. The flowchart below summarizes
the build process, highlighting the hook points. Valid values for hookMethod
are 'entry', 'before_tlc', 'after_tlc', 'before_make', 'after_make',
'exit', and 'error'. The STF_make_rtw_hook function dispatches to the
relevant code with a switch statement.

6-11

6 Advanced Code Generation Techniques

Input: — @
modelName,buildArgs

Real-Time Workshop

verification
v
| STF ‘entry’ hook |
| Error occurs |
| Create build directory | v

STF ‘error’ hook |

| STF ‘before_tlc’ hook |

Input:
buildOpts,templateMakefile—’I Generate code |

v
| STF ‘after_tlc’ hook |

|STF ‘before_make’ hook|

Invoke post code
generation command

v
Make

v

| STF ‘after_make’ hookl
v

| STF ‘exit hook |

End RTWGEN)<

* modelName: String specifying the name of the model. Valid at all stages
of the build process.

* rtwRoot: Reserved.

* templateMakefile: Name of template makefile.

6-12

Customizing the Target Build Process with the STF_make_rtw Hook File

® buildOpts: A MATLAB structure containing the fields described in the list
below. Valid for the 'before _make', 'after_make', and 'exit' stages

only. The buildOpts fields are

= modules: Character array specifying a list of additional files that need

to be compiled.

= codeFormat: Character array containing code format specified for the

target. (ERT-based targets must use the 'Embedded-C' code format.)

= noninlinedSFcns: Cell array specifying list of noninlined S-functions in

the model.

= compilerEnvVal: String specifying compiler environment variable value

(for example, C:\Applications\Microsoft Visual).

® buildArgs: Character array containing the argument to make_rtw. When

you invoke the build process, buildArgs is copied from the argument

string (if any) following "make_rtw" in the Make command field of the
Real-Time Workshop pane of the Configuration Parameters dialog box.

#, Configuration Parameters: untitled/Configuration (Active)
Select: — T arget selection
-~ Sobver System target file: Iert.tlc Browse. . |
- [1ata Import/E xport
- [ptimization Language: I C LI
[~ Diagnostics Description: Fieal-Time “Workshop Embedded Coder [ho auto configuration]
- Sample Time
- Data Validity —Diocumentation
- Type Conversion I~ Generate HTML report
- Connectivik .
Compatibilitﬁ I Launch repart autamatically
- Model Referencing I~ Include hyperlinks to model
- Hardware |mplementation
- Madel Referencing r—Build proc
[=-Real-Time Work shop TILE epfinss I
- Comments M akefil fiqurati
.- Symbals akefile configuration
- Custom Code ¥ Generate makefile
-~ Debug take command: Imake_rtw VART=0"AR2=4
- nterface)
- Code Styls Termplate makefile: |ert_defau|t_tmf
- Templates
- Data Placement Custom ot |
- Data Type Replaceme [Ustom sarage cla

- bemory Sections I™ lgnore custom storage classes

I~ Generate code anly

Lancel |

Help

Build |

Apply

b |x

il

6-13

6 Advanced Code Generation Techniques

The make arguments from the Make command field in the figure above,
for example, generate the following:

% make -f untitled.mk VAR1=0 VAR2=4

6-14

Customizing the Target Build Process with the STF_make_rtw Hook File

Applications for STF_make_rtw_hook.m

An enumeration of all possible uses for STF_make_rtw_hook.m is beyond the
scope of this document. However, this section provides some suggestions of
how you might apply the available hooks.

In general, you can use the 'entry' hook to initialize the build process
before any code is generated, for example to change or validate settings. One
application for the 'entry' hook is to rerun the auto-configuration script that
initially ran at target selection time to compare model parameters before and
after the script executes for validation purposes.

The other hook points, 'before_tlc', 'after_tlc', 'before_make',
‘after_make', 'exit', and 'error' are useful for interfacing with external
tool chains, source control tools, and other environment tools.

For example, you could use the STF_make_rtw_hook.m file at any stage after
'entry' to obtain the path to the build directory. At the 'exit' stage, you
could then locate generated code files within the build directory and check
them into your version control system. You might use 'error' to clean up
static or global data used by the hook function when an error occurs during
code generation or the build process.

Note that the build process temporarily changes the MATLAB working
directory to the build directory for stages 'before _make', 'after_make',
'exit', and 'error'. Your STF_make_rtw_hook.m file should not make
incorrect assumptions about the location of the build directory. You can obtain
the path to the build directory anytime after the 'entry' stage. In the
following code example, the build directory pathname is returned as a string
to the variable buildDirPath.

makertwObj = get_param(gcs, 'MakeRTWSettingsObject');
buildDirPath = getfield(makertwObj, 'BuildDirectory');

6-15

6 Advanced Code Generation Techniques

Using STF_make_rtw_hook.m for Your Build

Procedure

To create a custom STF_make_rtw_hook hook file for your build procedure,
copy and edit the example ert_make rtw_hook.m file (located in the
matlabroot/toolbox/rtw/targets/ecoder directory) as follows:

1 Copy ert_make_rtw_hook.m to a directory in the MATLAB path, and
rename it in accordance with the naming conventions described in “File
and Function Naming Conventions” on page 6-9. For example, to use it
with the GRT target grt.tlc, rename it to grt_make_rtw_hook.m.

2 Rename the ert_make_rtw_hook function within the file to match the
filename.

3 Implement the hooks that you require by adding code to the appropriate
case statements within the switch hookMethod statement. See
“Auto-Configuring Models for Code Generation” on page 6-22 for an

example.

6-16

Customizing the Target Build Process with sl_customization.m

Customizing the Target Build Process with
sl_customization.m

e “Overview” on page 6-17

e “Registering Build Process Hook Functions Using sl_customization.m”
on page 6-19

e “Variables Available for sl_customization.m Hook Functions” on page 6-20

o “Example Build Process Customization Using sl_customization.m” on page
6-20

Overview

The Simulink customization file s1_customization.m is a mechanism that
allows you to use M-code to perform customizations of the standard Simulink
user interface. Simulink reads the s1_customization.m file, if present

on the MATLAB path, when it starts and the customizations specified in

the file are applied to the Simulink session. For more information on the

sl customization.m customization file, see “Customizing the Simulink User
Interface” in the Simulink documentation.

The s1_customization.m file can be used to register installation-specific hook
functions to be invoked during the Real-Time Workshop build process. The
hook functions that you register through s1 _customization.m complement
System Target File (STF) hooks (described in “Customizing the Target Build
Process with the STF_make_rtw Hook File” on page 6-9) and post-code
generation commands (described in “Customizing Post Code Generation Build
Processing” in the Real-Time Workshop documentation).

The following figure shows the relationship between installation-level hooks
and the other available mechanisms for customizing the build process.

6-17

6 Advanced Code Generation Techniques

6-18

| Real-Time Workshop verification |

Entry | STF 'entry' hook |
| Installation 'entry' hook |
v
Before TLC | STF 'before_tlc' hookl
| Installation ‘before_tlc' hook |
v
After TLC

| STF 'after_tlc' hook |
| Installation 'after_tlc' hook |

v

Before Make

| STF 'before_make' hook |

| Installation 'before_make' hook |

i
vt

After Make

| STF 'after_make' hook |

| Installation 'after make' hook |

Post code
generation
command

v

Exit STF 'exit' hook

| Installation 'exit' hook |

Customizing the Target Build Process with sl_customization.m

Registering Build Process Hook Functions Using
sl_customization.m

To register installation-level hook functions that will be invoked during
the Real-Time Workshop build process, you create an M-file function
called s1_customization.m and include it on the MATLAB path of the
Simulink installation that you want to customize. The s1_customization
function accepts one argument: a handle to an object called the
Simulink.CustomizationManager. For example,

function sl_customization(cm)

As a starting point for your customizations, the s1_customization function
must first get the default (factory) customizations, using the following
assignment statement:

hObj = cm.RTWBuildCustomizer;

You then invoke methods to register your customizations. The customization
manager object includes the following method for registering Real-Time
Workshop build process hook customizations:

® addUserHook (hObj, hookType, hook)

Registers the hook function M-script or M-function specified by hook for
the build process stage represented by hookType. The valid values for
hookType are 'entry', 'before_tlc', 'after_tlc', 'before_make',
‘after_make', and 'exit'.

Your instance of the s1_customization function should use this method to
register installation-specific hook functions.

Simulink reads the s1_customization.m file when it starts. If you

subsequently change the file, you must restart Simulink or enter the following
command at the MATLAB command line to effect the changes:

sl_refresh_customizations

6-19

6 Advanced Code Generation Techniques

6-20

Variables Available for sl customization.m Hook
Functions

The following variables are available for s1_customization.m hook functions
to use:

®* modelName — The name of the Simulink model (valid for all stages)

® dependencyObject — An object containing the dependencies of the
generated code (valid only for the 'after_make' stage)

If a hook is an M-script, it can directly access the valid variables. If a hook is
an M-function, it can pass the valid variables as arguments to the function.
For example:

hObj .addUserHook ('after_make', 'afterMakeFunction(modelName,dependencyObject);"');

Example Build Process Customization Using
sl_customization.m

The s1_customization.m file shown in Example 1: sl_customization.m
for Real-Time Workshop Build Process Customizations on page 6-20
uses the addUserHook method to specify installation-specific build
process hooks to be invoked at the 'entry' and 'after_tlc' stages of
the Real-Time Workshop build. For the hook function source code, see
Example 2: CustomRTWEntryHook.m on page 6-21 and Example 3:
CustomRTWPostProcessHook.m on page 6-21.

Example 1: sl_customization.m for Real-Time Workshop Build
Process Customizations

function sl_customization(cm)
% Register user customizations

% Get default (factory) customizations
hObj = cm.RTWBuildCustomizer;

% Register Real-Time Workshop build process hooks
hObj.addUserHook('entry', 'CustomRTWEntryHook(modelName);');

hObj .addUserHook ('after_tlc', 'CustomRTWPostProcessHook(modelName);');

end

Customizing the Target Build Process with sl_customization.m

Example 2: CustomRTWEntryHook.m

function [str, status] = CustomRTWEntryHook(modelName)

str =sprintf('Custom entry hook for model ''%s.''',modelName);
disp(str)

status =1;

Example 3: CustomRTWPostProcessHook.m

function [str, status] = CustomRTWPostProcessHook(modelName)

str =sprintf('Custom post process hook for model ''S%s.''',modelName);
disp(str)

status =1;

If you include the above three files on the MATLAB path of the Simulink
installation that you want to customize, the coded hook function messages will
appear in the displayed output for Real-Time Workshop builds. For example, if
you open the ERT-based model rtwdemo_udt, open the Real-Time Workshop
pane of the Configuration Parameters dialog box, and click the Build button
to initiate a Real-Time Workshop build, the following messages are displayed:

>> rtwdemo_udt

Starting Real-Time Workshop build procedure for model: rtwdemo_udt

Custom entry hook for model 'rtwdemo_udt.'

Custom post process hook for model 'rtwdemo_udt.'

Successful completion of Real-Time Workshop build procedure for model: rtwdemo_udt

>>

6-21

6 Advanced Code Generation Techniques

6-22

Auto-Configuring Models for Code Generation

® “Overview” on page 6-22

“Utilities for Accessing Model Configuration Properties” on page 6-22

“Automatic Model Configuration Using ert_make_rtw_hook” on page 6-23

“Using the Auto-Configuration Utilities” on page 6-25

Overview

Traditionally, model parameters are configured manually prior to code
generation. It is now possible to automate the configuration of all (or selected)
model parameters at target selection time and at the beginning of the code
generation process. Auto-configuration is performed initially when you use
the Real-Time Workshop pane of the Configuration Parameters dialog

box to select an auto-configuration target. Auto-configuration additionally

is run at the 'entry' hook point of the STF_make rtw_hook.m hook file.

By automatically configuring a model in this way, you can avoid manually
configuring models. This saves time and eliminates potential errors. Note
that you can direct the automatic configuration process to save existing model
settings before code generation and restore them afterwards, so that a user’s
manually chosen options are not disturbed.

Utilities for Accessing Model Configuration Properties

Simulink provides two M-file utilities, set_param and get_param that you can
use with the STF_make_rtw_hook.m hook file to automate the configuration of
a model during the code generation process. These utilities let you configure
all code-generation options relevant to Simulink, Stateflow, Real-Time
Workshop, and Real-Time Workshop Embedded Coder. You can assign
values to model parameters, backup and restore model settings, and display
information about model options.

Using set_param to Set Model Parameters

To assign an individual model parameter value with set_param, pass in the
model name and a parameter name/parameter value pair, as in the following
examples:

set_param('model _name', 'SolverMode', 'Auto')

Auto-Configuring Models for Code Generation

set_param('model_name', 'GenerateSampleERTMain', 'on')

You can also assign multiple parameter name/parameter value pairs, as in
the following example:

set_param('model_name', 'SolverMode', 'Auto', 'RTWInlineParameters', 'off')

Note that the parameter names used by the set_param function are not
always the same as the model parameter labels seen on the Configuration
Parameters dialog box. For a list of parameters that you can specify and
their Configuration Parameters mapping, see the “Configuration Parameter
Reference” in the Real-Time Workshop documentation.

Automatic Model Configuration Using
ert_make_rtw_hook

As an example of automatic model configuration, consider the example

hook file, ert_make_rtw_hook.m. This file invokes the function
ert_auto_configuration, which in turn calls a lower level function that sets
all parameters of the model using the set param utility.

While reading this section, refer to the following files, (located in
matlabroot\toolbox\rtw\targets\ecoder):

® ert_make_rtw_hook.m
® ert_auto_configuration.m

® ert_config_opt.m

The ert_config opt auto-configuration function is invoked first at
target selection time and then again at the 'entry' stage of the build
process. The following code excerpt from ert_make rtw_hook.m shows
how ert_auto_configuration is called from the 'entry' stage. At the
'exit' stage, the previous model settings are restored. Note that the
ert_auto_configuration call is made within a try/catch block so that in
the event of a build error, the model settings are also restored.

switch hookMethod
case 'entry'
% Called at start of code generation process (before anything happens.)

6-23

Advanced Code Generation Techniques

6-24

% Valid arguments at this stage are hookMethod, modelName, and buildArgs.
disp(sprintf(['\n### Starting Real-Time Workshop build procedure for ',
'model: %s'],modelName));

option = LocalParseArgList(buildArgs);

if ~strcmp(option, 'none')
try
ert_unspecified_hardware(modelName);
cs = getActiveConfigSet(modelName);
CSCOpy = CS.copy;
ert_auto_configuration(modelName,option);
locReportDifference(cscopy, cs);
catch
% Error out if necessary hardware information is missing or
% there is a problem with the configuration script.
error(lasterr)
end
end

case 'exit'
% Called at the end of the RTW build process. All arguments are valid
% at this stage.
disp (['### Successful completion of Real-Time Workshop build ',...
‘procedure for model: ', modelName]);

end

The ert_auto_configuration function takes variable input arguments, the
first of which is interpreted according to the type of invocation.

® The first argument is either a string specifying a model name, for 'entry'
hook invocation, or a configuration set handle, for target selection
invocation.

¢ The second argument is a string specifying a configuration mode, which
is extracted from the buildArgs argument to ert_make_rtw_hook.m
(see “STF_make_rtw_hook.m Function Prototype and Arguments” on
page 6-11). In the example implementation, the configuration mode is
either 'optimized floating point' or 'optimized_fixed point'. The
following code excerpt from ert_config opt.m shows a typical use of this
argument to make a configuration decision:

Auto-Configuring Models for Code Generation

if strcmp(configMode, 'optimized_floating point')
set_param(cs, 'PurelyIntegerCode’, 'off');

elseif strcmp(configMode, 'optimized fixed point')
set_param(cs, 'PurelyIntegerCode','on');

end

ert make rtw_hook Limitation

The code that you specify to be executed during the build process using the
ert_make_rtw_hook mechanism cannot include a cd (change directory)
command. For example, you cannot use cd in 'entry' hook code to set the
build directory.

Using the Auto-Configuration Utilities

To use the auto-configuration utilities during your target selection and make
processes as described above:

1 Set up the example ert_make_rtw_hook.m as your STF_make_rtw_hook
file (see “Customizing the Target Build Process with the STF_make_rtw
Hook File” on page 6-9).

2 Reconfigure the set_param calls within ert_config_opt.m to suit your
application needs.

6-25

6 Advanced Code Generation Techniques

6-26

Generating Efficient Code with Optimized ERT Targets

® “Overview” on page 6-26

e “Default ERT Target” on page 6-27

* “Optimized Fixed-Point ERT Target” on page 6-27

® “Optimized Floating-Point ERT Target” on page 6-29
¢ “Using the Optimized ERT Targets” on page 6-31

Overview

To make it easier for you to generate code that is optimized for your target
hardware, Real-Time Workshop Embedded Coder provides three variants of
the ERT target. These targets are based on a common system target file,
ert.tlc. They are displayed in the System Target File Browser as shown in
the figure below.

x|
System target file: Description:
Real-Time Wor op Enbedded Coder (no auto configuration)
ert. tlc Real-Time Workshop Enbedded Coder (auto configures for optimized fim
ert. tlc Real-Time Workshop Enbedded Coder {auto configures for optimized le;J
ert. tlc Visual C-C++ Project Hakefile only for the Real-Time Workshop Embedd
ert_shrlib. tlc Real-Time Workshop Emnbedded Coder (host-based shared library target)
grt. tlc Generic Real-Tine Target
grt. tlc Visual C-C++ Project Hakefile only for the "grt" target
grt_malloc. tlc Generic Real-Tine Target with dynamic nemory allocation -
< o
Full narne: E:smatlabirtwhicherthert He

Template make file: ert_default_tmf
Make command: make_rtw

ok I Cancel | Help | Lpply |

The ERT target variants differ with respect to:

¢ Whether or not they auto-configure for optimized code generation options
during the target selection and code generation processes.

¢ Whether or not they require specification of target hardware characteristics
prior to code generation. Target hardware characteristics are configured
with the options in the Hardware Implementation pane of the
Configuration Parameters dialog box. (See “Hardware Implementation
Pane” in the Simulink documentation and “Hardware Implementation

Generating Efficient Code with Optimized ERT Targets

Options” in the Real-Time Workshop documentation for full details on the
Hardware Implementation pane).

The following sections describe the ERT target variants, and how to select
and use the optimized ERT targets.

Default ERT Target
The default ERT target is listed in the System Target File Browser as

Real-Time Workshop Embedded Coder (no auto configuration)

The Real-Time Workshop documentation refers to this target as the ERT
target.

This target does not invoke an auto-configuration utility. Specification of
target hardware characteristics is optional (although strongly recommended).

Optimized Fixed-Point ERT Target

The optimized fixed-point ERT target is listed in the System Target File
Browser as

Real-Time Workshop Embedded Coder (auto configures for optimized fixed-point code)

Select this target to optimize for fixed-point code generation.

The optimized fixed-point ERT target passes in the command

optimized fixed point=1 to the target selection process, and also to the
build process with the Make command field of the Real-Time Workshop
pane of the Configuration Parameters dialog box. This in turn invokes

the M-file ert_config _opt.m, which auto-configures the model. The
auto-configuration process overrides the model settings, informing users with
a message in the MATLAB command window.

You can, if desired, customize the option settings in the auto-configuration file,

file, ert_config opt.m. See “Auto-Configuring Models for Code Generation”
on page 6-22 for a complete description of the auto-configuration mechanism.

6-27

6 Advanced Code Generation Techniques

6-28

The optimized fixed-point ERT target requires specification of target
hardware characteristics prior to code generation. Before generating code, you
should select the desired Device type (or define a Custom device type) in the
upper panel of the Hardware Implementation pane of the Configuration
Parameters dialog box, and set the other properties appropriately for your
target. In the figure below, the Device type field is configured for the
Infineon C166x and XC16x microprocessor family.

#, Configuration Parameters: untitled/Configuration (Active)

b |x

Select: —Embedded hardware [simulation and code generation)

- Solver Device type:
- [1ata Import/E xport

.. Optimization Mumber of bits: char: IS shart: I‘IB int: I‘IB
- Diagnostics long: |32 native word size: |1 E

- Sample Time
- [1ata W alidity
- Type Conversion Signed integer division rounds to:l Zern
- Connectiviy

- Compatibility

- Model Referencing
ardware Implementation
adel Fleferencing [¥¢' Nane
eal-Time "Workshop

- Comments

- Symbaols

- Custom Code

- Diebug

- nterface

- Code Style

- Templates

- Data Placement

- [ata Type Replaceme
- bemory Sections

Byte ordering: I Little Endian

¥ Shift right on & signed integer az anithmetic shift

—Emulation hardware [code generation only]

Dz

Ok I Lancel Help | Apply |

Generating Efficient Code with Optimized ERT Targets

If the Device type field is set to Unspecified (assume 32-bit Generic),
an error message (similar to that in the figure below) is displayed at the start

of the code generation process.

T -ioix

‘Wigw Font Size

Message Source Reported by Summary

[Whiodel error |untitied Errar building Real-Tin cshop target for block

 untitled

Errar building Real-Time Workshop target for block diagram ‘untitled’. MATLAB errar message:

Errar using === callMakeHook p=callakeHoak at 47
The call to ert_make_rtw_hoak, during the entry hook generated the following error:

Errar using === ert_make_rw_hook at 92

Errar using === ert_unspecified_hardware. m=ert_unspecified_hardware at 47
ou have specified optimizations for code generation, but you have not specified sufficient information for the
target hardware device. To correct the condition, specify appropriate embedded hardware infarmation on the
Hardware Implementation panel of the Configuration Parameters dialog. Press 'Open'to launch the
Hardware Implementation Dialog

The build process will terminate as a result.

Qpen | Help | Close |

Optimized Floating-Point ERT Target

The optimized floating-point ERT target is listed in the System Target File

Browser as

Real-Time Workshop Embedded Coder (auto configures for optimized floating-point code)

Select this target to optimize for floating-point code generation.

The optimized floating-point ERT target passes in the command

optimized floating point=1 to the target selection process, and also

to the build process with the Make command field of the Real-Time
Workshop pane of the Configuration Parameters dialog box. This in turn
invokes the M-file ert_config_opt.m, which auto-configures the model. The
auto-configuration process overrides the model settings, informing users with

a message in the MATLAB command window.

6-29

6 Advanced Code Generation Techniques

You can, if desired, customize the option settings in the auto-configuration file,
file, ert_config opt.m. See “Auto-Configuring Models for Code Generation”
on page 6-22 for a complete description of the auto-configuration mechanism.

The optimized floating-point ERT target requires specification of target
hardware characteristics prior to code generation. Before generating code, you
should select the desired Device type (or define a Custom device type) in the
upper panel of the Hardware Implementation pane of the Configuration
Parameters dialog box, and set the other properties appropriately for your
target. In the figure below, the Device type field is configured for the 32-bit
PowerPC family of microprocessors.

#, Configuration Parameters: untitled/Configuration (Active)

Select:

- Solver

- [1ata Import/E xport
- [ptimization

- Diagnostics

- Sample Time

- [1ata W alidity

- Type Conversion
- Connectiviy

- Compatibility

- Model Referencing
ardware Implementation
odel Referencing
eal-Time "Workshop
- Comments

- Symbaols

- Custom Code

- Diebug

- nterface

- Code Style

- Templates

- Data Placement

Dz

- bemory Sections

- [ata Type Replaceme

x|
—Embedded hardware [simulation and code generation) 1=
Device type: i
Mumber of bits: char: IS— shart: I‘IB— int: |32—
long: |32— native word size: |32—
Byte ordering: I Big Endian LI
Signed integer divizgion rounds to:l Zemn LI
¥ Shift right on & signed integer az anithmetic shift
—Emulation hardware [code generation only]
¥ Mone
=
Ok I Lancel Help | Apply |

6-30

Generating Efficient Code with Optimized ERT Targets

If the Device type field is set to Unspecified (assume 32-bit Generic),
an error message (similar to that in the figure below) is displayed at the start
of the code generation process.

T -ioix

‘Wigw Font Size

Message Source Reported by Summary

[Whiodel error |untitied Errar building Real-Time YWarkshop target for block diagra...

 untitled

Errar building Real-Time Workshop target for block diagram ‘untitled’. MATLAB errar message:

Errar using === callMakeHook p=callakeHoak at 47
The call to ert_make_rtw_hoak, during the entry hook generated the following error:

Errar using === ert_make_rw_hook at 92

Errar using === ert_unspecified_hardware. m=ert_unspecified_hardware at 47
ou have specified optimizations for code generation, but you have not specified sufficient information for the
target hardware device. To correct the condition, specify appropriate embedded hardware infarmation on the
Hardware Implementation panel of the Configuration Parameters dialog. Press 'Open'to launch the
Hardware Implementation Dialog

The build process will terminate as a result.

Qpen | Help | Close |

Using the Optimized ERT Targets

This section describes how to use the optimized ERT targets in code
generation.

Configuring Hardware Implementation Properties

Before using one of the optimized versions of the ERT targets, make sure that
you have specified the Hardware Implementation properties for the model’s
active configuration set correctly. If this is not done properly, an error message
displays at the start of the code generation process and the build terminates.

To avoid such problems, select the desired Device type (or define a Custom
device type) in the upper panel of the Hardware Implementation pane
of the Configuration Parameters dialog box, and set the other properties
appropriately for your target (see “Optimized Fixed-Point ERT Target” on
page 6-27 and “Optimized Floating-Point ERT Target” on page 6-29). Do not
leave the Device type unspecified.

6-31

6 Advanced Code Generation Techniques

6-32

Note that if your model was created prior to MATLAB Release 14 and has
not yet been updated, the Device type defaults to Unspecified, and the
Emulation hardware properties (in the lower section of the Hardware
Implementation pane) are in an undefined state. This condition is
indicated by the presence of a button labeled Configure current execution
hardware device, as shown in this figure.

#, Configuration Parameters: r13_ert/Configuration (Active) x|
Select: —Embedded hardware [simulation and code generation) 1=
- Solver Device type: I Unzpecified [assume 32-bit Generic) LI
- Data Import/E xport X .
.- Dptimization Nurnber of bits: char: IS shart: |1 [int: |32
- Diagnostics long: |32 nhative word size: |32
- Sample Time . —
- Data Validity Byte ordering: I Unzpecified LI
- Type Conversion Signed integer divizgion rounds to:l Undefined LI
- Connectivity ¥ | Shift right o & signed integer as anithmetic shift
- Compatibility
- Model Referencing o lation hardware [code generation only)
g H ardware Implementation
- Model Referencing Configure current execution hardware device |
- Real-Time Waorkshop
- Comments
- Symbaols
- Custom Code
- Diebug
- nterface
- Code Style
- Templates]
- Data Placement
- [ata Type Replaceme
- bemory Sections
=
()8 I Cancel | Help | Apply |

In this case you should click the button to set the Emulation hardware
properties to a valid (default) state, and save the model.

Generating Efficient Code with Optimized ERT Targets

Generating Code
To generate code using one of the optimized ERT targets:

1 From the Real-Time Workshop pane of the Configuration Parameters
dialog box, open the System Target File Browser and select the desired
target. This figure shows the browser with the optimized fixed-point ERT
target selected.

x
System target file: Description:
ert.tlc Feal-Timne Workshop Embedded Coder (no auto configuration) -
Real-Time Workshop Embedded Coder {(auto configures for optimized fixed-point code)
ert.tlc Feal-Time Workshop Embedded Coder {auto configures for optimized {loating-point cor
ert.tlc Vi=zual C-C++ Project Makefile only for the Real-Time Workshop Embedded Coder _J
ert_shrlib. tlc Feal-Time Workshop Embedded Coder (host-based shared library target)
grt.tlc Generic REeal-Time Target
grt.tlc Vi=zual C-C++ Project MHakefile only for the "grt" target
grt_malloc. tle Generic REeal-Time Target with dynamic memory allocation -
|l .
Full name: E:\matlabhrbwhchertsert. e

Template make file: ert_default_tmf
Make command: make_rtw optimized_fixed_point=1

QK I Cancel | Help | Apply |

2 When you click Apply or OK to apply the target selection, the
auto-configuration code executes. This is reported in a message similar
to the following:

*** Auto configuring 'optimized_fixed_point' for model 'untitled' as specified by:

ert_config_opt.m
*** Qverwriting model settings if they do not yield optimized code.

3 Initiate the build process.

4 If your model’s Hardware Implementation parameters are not
configured correctly, an error message is displayed. If the error appears, see
“Configuring Hardware Implementation Properties” on page 6-31 to learn
how to correct the problem, and then retry Step 3.

5 During code generation, the auto-configuration code executes a second time,
and the auto-configuration message displayed in Step 2 appears again.

6 Other than the auto-configuration messages, the build process executes
normally, reporting the usual progress and completion messages.

6-33

6 Advanced Code Generation Techniques

6-34

Custom File Processing

“Overview” on page 6-34

“Custom File Processing Components” on page 6-35

“Custom File Processing User Interface Options” on page 6-35
“Code Generation Template (CGT) Files” on page 6-37

“Using Custom File Processing (CFP) Templates” on page 6-41
“Custom File Processing (CFP) Template Structure” on page 6-42

“Generating Source and Header Files with a Custom File Processing (CFP)
Template” on page 6-43

“Code Template API Summary” on page 6-52

“Generating Custom File Banners” on page 6-55

Overview

This section describes Real-Time Workshop Embedded Coder custom file
processing (CFP) features. Custom file processing simplifies generation of
custom source code by letting you

Generate virtually any type of source (.c or .cpp) or header (.h) file. Using
a custom file processing template (CFP template), you can control how code
is emitted to the standard generated model files (for example, model.c or
.cpp, model.h) or generate files that are independent of model code.

Organize generated code into sections (such as includes, typedefs, functions,
and more). Your CFP template can emit code (for example, functions),
directives (such as #define or #include statements), or comments into
each section as required.

Generate custom file banners (comment sections) at the start and end of
generated code files.

Generate code to call model functions such as model initialize,
model_step, and so on.

Generate code to read and write model inputs and outputs.

Generate a main program module.

Custom File Processing

Obtain information about the model and the files being generated from it.

Custom File Processing Components

The custom file processing features discussed in this section are based on the
following interrelated components:

Code generation template (CGT) files: A CGT file defines the top-level
organization and formatting of generated code. CGT files are described in
“Code Generation Template (CGT) Files” on page 6-37.

The code template API: a high-level Target Language Compiler (TLC) API
that provides functions that let you organize code into named sections
and subsections of generated source and header files. The code template
API also provides utilities that return information about generated files,
generate standard model calls and perform other useful functions. See
“Code Template API Summary” on page 6-52.

Custom file processing (CFP) templates: A CFP template is a TLC file that
manages the process of custom code generation. The primary purpose of a
CFP template is to assemble code to be generated into buffers, and to call
the code template API to emit the buffered code into specified sections of
generated source and header files. A CFP template interacts with a CGT

file, which defines the ordering of major sections into which code is emitted.

CFP templates and their applications are described in “Using Custom File
Processing (CFP) Templates” on page 6-41.

Understanding of TLC programming is required to use CFP templates. See
the Target Language Compiler document to learn the basics.

Custom File Processing User Interface Options

Use of custom file processing features requires creation of CGT files and/or
CFP templates. Usually, these files are based on default templates provided
by Real-Time Workshop Embedded Coder. Once you have created your
templates, you must integrate them into the code generation process.

The Templates pane of the Real-Time Workshop properties of a
model configuration set lets you select and edit CGT files and CFP
templates, and specify their use in the code generation process. Real-Time

6-35

6 Advanced Code Generation Techniques

Workshop/Templates Pane on page 6-36 shows this pane, with all options
configured for their defaults.

#, Configuration Parameters: untitled/Configuration (Active) ﬂ
T —Code templal =l
- Solver Source file [*.c] template: Iert_code_template.cgt Browse... Edi...
- [1ata Import/E xport
- [ptimization Header file [*.h] template: Iert_code_template.cgt Browse... Edit...
- Diagnostics
- Sample Time —Data templal
- [1ata W alidity
. Type Corrversion Source file [*.c] template: Iert_code_template.cgt Browse... Edit...
- Connectivity Header file [* h] template: Iert_code_template.cgt Browse... Edit...
- Compatibility
- Model Heferencing I e——
- Hardware |mplementation
- Model Referencing File custamization template: Iexample_file_process.tlc Browse... | Edit... |
E-Fieal-Time Workshap ¥ Generate an example main program
- Comments
- Symbols Target operating system: | BareBoardE xample j
- Custom Code
- Diebug
- nterface
- Code Style
=13 o
- Data Placement
- [ata Type Replaceme
- bemory Sections LI

Ok I Lancel Help | Apply |

Real-Time Workshop/Templates Pane
The options related to custom file processing are:

® The Source file (.c) template field in the Code templates and Data
templates sections. This field specifies the name of a CGT file to use
when generating source (.c or .cpp) files. This file must be located on
the MATLAB path.

¢ The Header file ((h) template field in the Code templates and Data
templates sections. This field specifies the name of a CGT file to use when
generating header (.h) files. This file must be located on the MATLAB
path.

By default, the template for both source and header files is
matlabroot/toolbox/rtw/targets/ecoder/ert_code_template.cgt.

¢ The File customization template edit field in the Custom
templates section. This field specifies the name of a CFP

6-36

Custom File Processing

template file to use when generating code files. This file must
be located on the MATLAB path. The default CFP template is
matlabroot/toolbox/rtw/targets/ecoder/example file process.tlc.

Each of these fields has associated Browse and Edit buttons. Browse lets
you navigate to and select an existing CFP template or CGT file. Edit opens
the specified CFP template into the MATLAB editor, where you can customize
it.

Code Generation Template (CGT) Files

CGT files have a number of applications:

® The simplest application is generation of custom file banners (comments
sections) in code files. To do this, no knowledge of the details of the CGT file
structure is required; see “Generating Custom File Banners” on page 6-55.

® Some of the advanced features described in the Module Packaging Features
document utilize CGT files. Refer to that document for information.

® When generating custom code using a CFP template, a CGT file is required.
Correct use of CFP templates requires understanding of the CGT file
structure, although in many cases it is possible to use the default CGT file
without modification.

Default CGT file

Real-Time Workshop Embedded Coder provides a default CGT file:
matlabroot\toolbox\rtw\targets\ecoder\ert_code_template.cgt.

You should base your custom CGT files on the default file.

CGT File Structure
A CGT file consists of three sections:

Header Section. This section is optional. It contains comments and tokens

for use in generating a custom header banner. “Generating Custom File
Banners” on page 6-55 gives details on custom banner generation.

6-37

6 Advanced Code Generation Techniques

6-38

Code Insertion Section. This section is required. It contains tokens that
define an ordered partitioning of the generated code into a number of sections
(such as Includes and Defines sections). Tokens have the form

%<SectionName>

For example,

%<Includes>

Real-Time Workshop Embedded Coder defines a minimal set of tokens that
are required for the generation of C or C++ source or header code. These are
built-in tokens (see “Built-In Tokens and Sections” on page 6-38). You can
also define custom tokens and add them to the code insertion section (see
“Generating a Custom Section” on page 6-50).

Each token functions as a placeholder for a corresponding section of generated
code. The ordering of the tokens defines the order in which the corresponding
sections appear on the generated code. The presence of a token in the CGT
file does not guarantee that the corresponding section is generated. To
generate code into a given section, you must do so explicitly by calling the
code template API from a CFP template, as described in “Using Custom File
Processing (CFP) Templates” on page 6-41.

The CGT tokens define the high-level organization of generated code. Using
the code template API, you can partition each code section into named
subsections, as described in “Subsections” on page 6-40.

You can also insert C or C++ comments into the code insertion section,
between tokens. Such comments are inserted directly into the generated code.

Trailer Section. This section is optional. It contains comments and tokens for
use in generating a custom trailer banner. “Generating Custom File Banners”
on page 6-55 gives details on custom banner generation.

Built-In Tokens and Sections

The following code extract shows the code insertion section of the default
CGT file, showing the built-in tokens.

%% Required tokens. You can insert comments and other tokens in between them,

Custom File Processing

%% but do not change their order or remove them.

o°
o°

%<Includes>
%<Defines>
%<Types>
%S<Enums>
%<Definitions>
%<Declarations>
%<Functions>

Note carefully the following requirements before creating or customizing a
CGT file:
e All the built-in tokens are required. None can be removed.

¢ Built-in tokens must appear in the order shown. The ordering is significant
because each successive section can have dependencies on previous sections.

¢ Only one token can appear per line.
¢ Tokens must not be repeated.

¢ Custom tokens can be added to the code insertion section, provided that the
previous requirements are not violated.

¢ Comments can be added to the code insertion section, provided that the

previous requirements are not violated.

Built-In CGT Tokens and Corresponding Code Sections on page 6-39
summarizes the built-in tokens and corresponding section names, and
describes the code sections.

Built-In CGT Tokens and Corresponding Code Sections

Token / Section

Name Description

Includes #include directives section

Defines #define directives section

Types typedef section. Typedefs can depend on any
previously defined type

6-39

6 Advanced Code Generation Techniques

Built-In CGT Tokens and Corresponding Code Sections (Continued)

Token / Section
Name

Description

Enums Enumerated types section
Definitions Place data definitions here (for example, double x =
3.0;)
Declarations Data declarations (for example, extern double x;)
Functions C or C++ functions
Subsections

It is possible to define one or more named subsections for any section. Some of
the built-in sections have predefined subsections. These are summarized in
Subsections Defined for Built-In Sections on page 6-40.

It is important to note that the sections and subsections listed in Subsections
Defined for Built-In Sections on page 6-40 are emitted, in the order listed, to
the source or header file being generated.

The custom section feature lets you define sections in addition to those listed
in Subsections Defined for Built-In Sections on page 6-40. See “Generating a
Custom Section” on page 6-50 for information on how to do this.

Subsections Defined for Built-In Sections

Section Subsections Subsection Description

Includes N/A

Defines N/A

Types IntrinsicTypes Intrinsic typedef section. Intrinsic types are
those that depend only on intrinsic C or C++
types.

6-40

Custom File Processing

Subsections Defined for Built-In Sections (Continued)

Section Subsections Subsection Description

Types PrimitiveTypedefs Primitive typedef section. Primitive typedefs
are those that depend only on intrinsic C or C++
types and on any typedefs previously defined in
the IntrinsicTypes section.

Types UserTop Any type of code can be placed in this section.
You can place code that has dependencies on the
previous sections here.

Types Typedefs typedef section. Typedefs can depend on any
previously defined type

Enums N/A

Definitions N/A

Declarations N/A

Functions C or C++ functions

Functions CompilerErrors #warning directives

Functions CompilerWarnings #error directives

Functions Documentation Documentation (comment) section

Functions UserBottom Any code can be placed in this section.

Using Custom File Processing (CFP) Templates
The files provided to support custom file processing are

matlabroot\rtw\c\tlc\mw\codetemplatelib.tlc: A TLC function
library that implements the code template API. codetemplatelib.tlc also
provides the comprehensive documentation of the API in the comments
headers preceding each function.

matlabroot\toolbox\rtw\targets\ecoder\example file_ process.tlc:
An example custom file processing (CFP) template, which you should use
as the starting point for creating your own CFP templates. Guidelines and
examples for creating a CFP template are provided in “Generating

6-41

6 Advanced Code Generation Techniques

6-42

Source and Header Files with a Custom File Processing (CFP)
Template” on page 6-43.

o TLC files supporting generation of single-rate and multirate main program
modules (see “Customizing Main Program Module Generation” on page
6-48).

Once you have created a CFP template, you must integrate it into the code
generation process, using the File customization template edit field (see
“Custom File Processing User Interface Options” on page 6-35).

Custom File Processing (CFP) Template Structure

A custom file processing (CFP) template imposes a simple structure on the
code generation process. The template, in conjunction with a code generation
template (CGT) file, partitions the code generated for each file into a number
of sections. These sections are summarized in Built-In CGT Tokens and
Corresponding Code Sections on page 6-39 and Subsections Defined for
Built-In Sections on page 6-40.

Code for each section is assembled in buffers and then emitted, in the order
listed, to the file being generated.

To generate a file section, your CFP template must first assemble the code
to be generated into a buffer. Then, to emit the section, your template calls
the TLC function

LibSetSourceFileSection(fileH, section, tmpBuf)

where

e fileHis a file reference to a file being generated.

® section is the code section or subsection to which code is to be emitted.
section must be one of the section or subsection names listed in Subsections
Defined for Built-In Sections on page 6-40.

Determine the section argument as follows:

= If Subsections Defined for Built-In Sections on page 6-40 defines no
subsections for a given section, use the section name as the section
argument.

Custom File Processing

= If Subsections Defined for Built-In Sections on page 6-40 defines one or
more subsections for a given section, you can use either the section name
or a subsection name as the section argument.

= If you have defined a custom token denoting a custom section, do not call
LibSetSourceFileSection. Special API calls are provided for custom
sections (see “Generating a Custom Section” on page 6-50).

® tmpBuf is the buffer containing the code to be emitted.

There is no requirement to generate all of the available sections. Your
template need only generate the sections you require in a particular file.

Note that no legality or syntax checking is performed on the custom code
within each section.

The next section, “Generating Source and Header Files with a Custom File
Processing (CFP) Template” on page 6-43, provides typical usage examples.

Generating Source and Header Files with a Custom
File Processing (CFP) Template

This section walks you through the process of generating a simple source
(.c or .cpp) and header (.h) file using the example CFP template. Then, it
examines the template and the code generated by the template.

The example CFP template, example file process.tlc, demonstrates some
of the capabilities of the code template API, including

Generation of simple source (.c or .cpp) and header (. h) files

Use of buffers to generate file sections for includes, functions, and so on

Generation of includes, defines, and so on into the standard generated
files (for example, model.h)

Generation of a main program module

Generating Code with a CFP Template

This section sets up a CFP template and configures a model to use the
template in code generation. The template generates (in addition to the

6-43

6 Advanced Code Generation Techniques

6-44

standard model files) a source file (timestwo.c or .cpp) and a header file
(timestwo.h).

You should follow the steps below to become acquainted with the use of CFP
templates:

1 Copy the example CFP template,
matlabroot/toolbox/rtw/targets/ecoder/example_file process.tlc,
to a directory of your choice. This directory should be located outside the
MATLAB directory structure (that is, it should not be under matlabroot.)
Note that this directory must be on the MATLAB path, or on the TLC path.
It is good practice to locate the CFP template in the same directory as your
system target file, which is guaranteed to be on the TLC path.

2 Rename the copied example file process.tlc to
test_example_file_process.tlc.

3 Open test_example file process.tlc into the MATLAB editor.
4 Uncomment the following line:

%% %assign ERTCustomFileTest = TLC_TRUE

It should now read:

%assign ERTCustomFileTest = TLC_TRUE

If ERTCustomFileTest is not assigned as shown, the CFP template is
ignored in code generation.

5 Save your changes to the file. Keep test _example file process.tlc
open, so you can refer to it later.

6 Open the rtwdemo_udt model.

7 Open the Simulink Model Explorer. Select the active configuration set of
the model, and open the Real-Time Workshop properties view of the
active configuration set.

8 Click on the Templates tab.

Custom File Processing

9 Configure the File customization template field as shown below. The
test_example file process.tlc file, which you previously edited, is
now specified as the CFP template.

Real-Time Workshop
| Comments | Symbaols | Cusztom Code | Debug | Interface | Code Style | Templates IDe<|>

—Code templa
Source file [*.c] template: Iert_code_template.cgt Browse... Edit...
Header file [* k) template: Iert_code_template.cgt Browse... Edit...
—Data templal
Source file [*.c] template: Iert_code_template.cgt Browse... Edit...
Header file [* k) template: Iert_code_template.cgt Browse... Edit...

—Cugtom templal

File customization template:Itest_example_file_process.tld Browse... | Edit... |

[V Generate an example main program

Target operating systen: I BareBoardE xample LI

[~ Generate code anly Build |

Fevert | Help | Apply |

10 Select the Generate code only option.
11 Click Apply.

12 Click Generate code. During code generation, notice the following
message on the MATLAB command window:

Warning: Overriding example ert_main.c!
This message is displayed because test example file process.tlc

generates the main program module, overriding the default action of the
ERT target. This is explained in greater detail below.

6-45

6 Advanced Code Generation Techniques

6-46

13 The rtwdemo_udt model is configured to generate an HTML code generation
report. After code generation completes, view the report. Notice that the
Generated Source Files list contains the files timestwo.c, timestwo.h,
and ert_main.c. These files were generated by the CFP template. The
next section examines the template to learn how this was done.

14 Keep the model, the code generation report, and the
test_example file process.tlc file open so you can refer to
them in the next section.

Analysis of the Example CFP Template and Generated Code

This section examines excerpts from test_example file process.tlc
and some of the code it generates. You should refer to the comments in
codetemplatelib.tlc while reading the discussion below.

Generating Code Files. Source (.c or .cpp) and header (.h) files are created
by calling LibCreateSourceFile, as in the following excerpts:

%assign cFile = LibCreateSourceFile("Source", "Custom", "timestwo")

%assign hFile = LibCreateSourceFile("Header", "Custom", "timestwo")

Subsequent code refers to the files by the file reference returned from
LibCreateSourceFile.

File Sections and Buffers. The code template API lets you partition the
code generated to each file into sections, tagged as Definitions, Includes,
Functions, Banner, and so on. You can append code to each section as many
times as required. This technique gives you a great deal of flexibility in the
formatting of your custom code files.

The available file sections, and the order in which they are emitted to the
generated file, are summarized in Subsections Defined for Built-In Sections
on page 6-40.

For each section of a generated file, use %openfile and %closefile to store
the text for that section in temporary buffers. Then, to write (append) the
buffer contents to a file section, call LibSetSourceFileSection, passing

in the desired section tag and file reference. For example, the following
code uses two buffers (tmwtypesBuf and tmpBuf) to generate two sections

Custom File Processing

(tagged "Includes" and "Functions") of the source file timestwo.c or .cpp
(referenced as cFile):

%sopenfile tmwtypesBuf

#include "tmwtypes.h"
%closefile tmwtypesBuf
%<LibSetSourceFileSection(cFile, "Includes",tmwtypesBuf)>
%sopenfile tmpBuf

/* Times two function */
real T timestwofcn(real_T input) {
return (input * 2.0);

}
%closefile tmpBuf
%<LibSetSourceFileSection(cFile, "Functions",tmpBuf)>

These two sections generate the entire timestwo.c or .cpp file

#include "tmwtypes.h"

/* Times two function */
FLOAT64 timestwofcn(FLOAT64 input)
{

return (input * 2.0);

}

Adding Code to Standard Generated Files. The timestwo.c or .cpp file
generated in the previous example was independent of the standard code files
generated from a model (for example, model.c or .cpp, model.h, and so on).
You can use similar techniques to generate custom code within the model
files. The code template API includes functions to obtain the names of the
standard models files and other model-related information. The following
excerpt calls LibGetMd1PubHdrBaseName to obtain the correct name for the
model.h file. It then obtains a file reference and generates a definition in the
Defines section of model.h:

6-47

6 Advanced Code Generation Techniques

6-48

%% Add a #define to the model's public header file model.h

%assign pubName = LibGetMdlPubHdrBaseName ()
%assign modelH = LibCreateSourceFile("Header", "Simulink", pubName)

%sopenfile tmpBuf

#define ACCELERATION 9.81

%closefile tmpBuf
%<LibSetSourceFileSection(modelH, "Defines",tmpBuf)>

Examine the generated rtwdemo_udt.h file to see the generated #define
directive.

Customizing Main Program Module Generation. Normally, the ERT
target follows the Generate an example main program and Target
operating system options to determine how to generate an ert_main.c or
.cpp module (if any). You can use a CFP template to override the normal
behavior and generate a main program module customized for your target
environment.

To support generation of main program modules, two TLC files are provided:

® bareboard_srmain.tlc: TLC code to generate an example single-rate main
program module for a bareboard target environment. Code is generated by
a single TLC function, FcnSingleTaskingMain.

® bareboard_mrmain.tlc: TLC code to generate a multirate main program
module for a bareboard target environment. Code is generated by a single
TLC function, FcnMultiTaskingMain.

In the example CFP template, the following code generates either a single- or
multitasking ert_main.c or .cpp module. The logic depends on information
obtained from the code template API calls LibIsSingleRateModel and
LibIsSingleTasking:

%% Create a simple main. Files are located in MATLAB/rtw/c/tlc/mw.

%if LibIsSingleRateModel() || LibIsSingleTasking()

Custom File Processing

%include "bareboard_srmain.tlc"

%<FcnSingleTaskingMain()>
%selse

%include "bareboard_mrmain.tlc"

%s<FcnMultiTaskingMain()>
%sendif

Note that bareboard_srmain.tlc and bareboard_mrmain.tlc use the code
template API to generate ert_main.c or .cpp.

When generating your own main program module, you disable the default
generation of ert_main.c or .cpp. The TLC variable GenerateSampleERTMain
controls generation of ert_main.c or .cpp. You can directly force

this variable to TLC_FALSE. The examples bareboard_mrmain.tlc and
bareboard_srmain.tlc use this technique, as shown in the following excerpt
from bareboard_srmain.tlc.

%if GenerateSampleERTMain
%assign CompiledModel.GenerateSampleERTMain = TLC_FALSE
swarning Overriding example ert_main.c!

sendif

Alternatively, you can implement a SelectCallback function for your target.
A SelectCallback function is an M function that is triggered during model
loading, and also when the user selects a target with the System Target File
browser. Your SelectCallback function should deselect and disable the
Generate an example main program option. This prevents the TLC
variable GenerateSampleERTMain from being set to TLC_TRUE.

See the “rtwgensettings Structure” section of the Developing Embedded
Targets document for information on creating a SelectCallback function.

The following code illustrates how to deselect and disable the Generate an
example main program option in the context of a SelectCallback function.

slConfigUISetVal(hDlg, hSrc, 'GenerateSampleERTMain', 'off');
slConfigUISetEnabled(hDlg, hSrc, 'GenerateSampleERTMain',0);

6-49

6 Advanced Code Generation Techniques

6-50

Note Creation of a main program for your target environment requires some
customization; for example, in a bareboard environment you need to attach
rt_OneStep to a timer interrupt. It is expected that you will customize either
the generated code, the generating TLC code, or both. See “Guidelines for
Modifying the Main Program” on page 2-14 and “Guidelines for Modifying
rt_OneStep” on page 2-20 for further information.

Generating a Custom Section

You can define custom tokens in a CGT file and direct generated code into
an associated built-in section. This feature gives you additional control
over the formatting of code within each built-in section. For example, you
could add subsections to built-in sections that do not already define any
subsections. All custom sections must be associated with one of the built-in
sections: Includes, Defines, Types, Enums, Definitions, Declarations, or
Functions. To create custom sections, you must

¢ Add a custom token to the code insertion section of your CGT file.
¢ In your CFP file:
= Assemble code to be generated to the custom section into a buffer.

= Declare an association between the custom section and a built-in section,
with the code template API function LibAddSourceFileCustomSection.

= Emit code to the custom section with the code template API function
LibSetSourceFileCustomSection.

The following code examples illustrate the addition of a custom token,
Myincludes, to a CGT file, and the subsequent association of the custom
section Myincludes with the built-in section Includes in a CFP file.

First, add the token Myincludes to the code insertion section of your CGT
file. For example:

%<Includes>
%<Myincludes>
%<Defines>
%<Types>

Custom File Processing

%<Enums>
%<Definitions>
%<Declarations>
%<Functions>

Next, in the CFP file, generate include directives into a buffer. For example:

sopenfile MyTmp
#include "moretablesi.h"
#include "moretables2.h"
%sclosefile MyTmp

The following function call declares an association between the built-in
section Includes and the custom section Myincludes. In effect, Myincludes
is a subsection of Includes.

%<LibAddSourceFileCustomSection(modelC, "Includes","Myincludes")>

The following call to LibSetSourceFileCustomSection directs the
code in the MyTmp buffer to the desired section of the generated
file. LibSetSourceFileCustomSection is syntactically identical to
LibSetSourceFileSection.

%<LibSetSourceFileCustomSection(modelC, "Myincludes" ,MyTmp) >

In the generated code, the include directives generated to the custom section
appear after other code directed to Includes.

#include "rtwdemo_udt.h"
#include "rtwdemo_udt_private.h"
#include "moretablesi.h"
#include "moretables2.h"

Note The placement of the custom token in this example is arbitrary. By
locating %<Myincludes> after %<Includes>, the CGT file ensures only that
the Myincludes code appears after Includes code.

6-51

6 Advanced Code Generation Techniques

Code Template APl Summary

Code Template API Functions on page 6-52 summarizes the code template
API. See the source code in codetemplatelib.tlc for detailed information on
the arguments, return values, and operation of these calls.

Code Template API Functions

Function Description

LibGetNumSourceFiles Returns the number of created source files
(.cor .cpp and .h).

LibGetSourceFileTag Returns <filename>_h and <filename>_c
for header and source files, respectively,
where filename is the name of the model

file.

LibCreateSourceFile Creates a new C or C++ file and returns its
reference. If the file already exists, simply
returns its reference.

LibGetSourceFileFromIdx Returns a model file reference based on
its index. This is useful for a common
operation on all files, such as to set the
leading file banner of all files.

LibSetSourceFileSection Adds to the contents of a specified section
within a specified file (see also “Custom
File Processing (CFP) Template Structure”
on page 6-42).

LibGetSourceFileSection Retrieves the contents of a file section. See
the code for LibSetSourceFileSection
for list of valid sections.

LibIndentSourceFile Indents a file with the ¢c_indent utility
of Real-Time Workshop (from within the
TLC environment).

LibCallModelInitialize Returns code for calling the model’s
model_initialize function (valid for ERT
only).

6-52

Custom File Processing

Code Template API Functions (Continued)

Function

Description

LibCallModelStep

Returns code for calling the model’s

model_step function (valid for ERT only).

LibCallModelTerminate

Returns code for calling the model’s

model terminate function (valid for ERT

only).

LibCallSetEventForThisBaseStep

Returns code for calling the model’s set

events function (valid for ERT only).

LibWriteModelData

Returns data for the model (valid for ERT

only).

LibSetRTModelErrorStatus

Returns the code to set the model error

status.

LibGetRTModelErrorStatus

Returns the code to get the model error

status.
LibIsSingleRateModel Returns true if model is single rate and
false otherwise.
LibGetModelName Returns name of the model (no extension).
LibGetMd1lSrcBaseName Returns the name of model’s main source

file (for example, model.c or .cpp).

LibGetMd1PubHdrBaseName

Returns the name of model’s public header

file (for example, model.h).

LibGetMd1PrvHdrBaseName

Returns the name of the model’s
private header file (for example,
model private.h).

LibIsSingleTasking Returns true if the model is configured for
singletasking execution.
LibWriteModelInput Returns the code to write to a particular

root input (that is, a model inport block).

(valid for ERT only).

6-53

6 Advanced Code Generation Techniques

Code Template API Functions (Continued)

Function Description

LibWriteModelOutput Returns the code to write to a particular
root output (that is, a model outport block).
(valid for ERT only).

LibWriteModelInputs Returns the code to write to root inputs
(that is, all model inport blocks). (valid for
ERT only)

LibWriteModelOutputs Returns the code to write to root outputs

(that is, all model outport blocks). (valid
for ERT only).

LibNumDiscreteSampleTimes Returns the number of discrete sample
times in the model.

LibSetSourceFileCodeTemplate Set the code template to be used for
generating a specified source file.

LibSetSourceFileOutputDirectory Set the directory into which a specified
source file is to be generated.

LibAddSourceFileCustomSection Add a custom section to a source file.
The custom section must be associated
with one of the built-in (required)
sections: Includes, Defines, Types,
Enums, Definitions, Declarations, or
Functions.

LibSetSourceFileCustomSection Adds to the contents of a specified custom
section within a specified file. The custom
section must have been previously created
with LibAddSourceFileCustomSection.

LibGetSourceFileCustomSection Returns the contents of a specified custom
section within a specified file.

LibSetCodeTemplateCompliancelLevel This function must be called from your
CFP template before any other code
template API functions are called. Pass in
2 as the level argument.

6-54

Custom File Processing

Generating Custom File Banners

Using code generation template (CGT) files, you can specify custom file
banners to be inserted into generated code files. File banners are comment
sections in the header and trailer portions of a generated file. You can use
these banners to add a company copyright statement, specify a special version
symbol for your configuration management system, remove time stamps,

and for many other purposes. These banners can contain non US-ASCII
characters, which are propagated to the generated code.

The recommended technique for specifying file banners is to create a custom
CGT file with a customized banner section. During the build process, an
executable TLC file is created from the CGT file. This TLC file is then invoked
during the code generation process.

You do not need to be familiar with TL.C programming to generate custom
banners. Generally, you simply need to modify example files supplied with
the ERT target.

Note Prior releases supported direct use of customized TLC file as banner
templates. These were specified with the Source file (.c) banner template
and Header file (.h) banner template options of the ERT target. Direct use
of a TLC file for this purpose is still supported for backward compatibility, but
you should now use CGT files for this purpose instead.

File banner generation is supported by the options in the Code templates
section of the Templates pane of the Real-Time Workshop properties of a
configuration set (shown in ERT Templates Options on page 6-56).

6-55

6 Advanced Code Generation Techniques

6-56

#, Configuration Parameters: untitled/Configuration (Active) ﬂ
T —Code templal =l
- Solver Source file [*.c] template: Iert_code_template.cgt Browse... Edi...
- [1ata Import/E xport
- [ptimization Header file [*.h] template: Iert_code_template.cgt Browse... Edit...
- Diagnostics
- Sample Time —Data templal
- [1ata W alidity
. Type Corrversion Source file [*.c] template: Iert_code_template.cgt Browse... Edit...
- Connectivity Header file [* h] template: Iert_code_template.cgt Browse... Edit...
- Compatibility
- Model Heferencing I e——
- Hardware |mplementation
- Model Referencing File custamization template: Iexample_file_process.tlc Browse... | Edit... |
E-Fieal-Time Workshap ¥ Generate an example main program
- Comments
- Symbols Target operating system: | BareBoardE xample j
- Custom Code
- Diebug
- nterface
- Code Style
=T empl o
- Data Placement
- [ata Type Replaceme
- bemory Sections LI

Ok I Lancel Help | Lpply |

ERT Templates Options
The options related to file banner generation are

® Source file (.c) template: CGT file to use when generating source (.c or
.cpp) files. This file must be located on the MATLAB path.

* Header file (.h) template: CGT file to use when generating header (.h)
files. This file must be located on the MATLAB path. This can be the same
template specified in the Source file (.c) template field, in which case
identical banners are generated in source and header files.

By default, the template for both source and header files is
matlabroot/toolbox/rtw/targets/ecoder/ert_code_template.cgt.

¢ Each of these fields has associated Browse and Edit buttons. Browse lets
you navigate to and select an existing CGT file for use as a template. Edit
opens the specified file into the MATLAB editor, where you can customize it.

Custom File Processing

Creating a Custom File Banner Template

The recommended procedure for customizing a CGT for custom file banner

generation is to make a local copy of the default code template and edit it, as
follows:

1 Activate the configuration set you want to work with.

2 Open the Real-Time Workshop properties view of the active configuration
set.

3 Click on the Templates tab (see ERT Templates Options on page 6-56).

4 By default, the code template specified in the Source file
(.c) template and Header file (.h) template fields is
matlabroot/toolbox/rtw/targets/ecoder/ert_code_template.cgt.

5 If you want to use a different template as your starting point, use the
Browse button to locate and select a CGT file.

6 Click the Edit button to open the CGT file into the MATLAB editor.

7 Save a local copy of the CGT file. Store the copy in a directory that is not
inside the MATLAB directory structure. Note that this directory must be
on the MATLAB path. If necessary, add the directory to the MATLAB path.

8 If you intend to use the CGT file in conjunction with a custom target, it is
good practice to locate the CGT file in a folder under your target’s root
directory.

9 It is also good practice to rename your local copy of the CGT file. When you
rename the CGT file, make sure to edit the associated Source file (.c)
template or Header file (.h) template field to match the new filename.

10 Edit and customize the CGT file as needed (See “Customizing a Code
Generation Template (CGT) File for Custom Banner Generation” on page
6-58). Before exiting the MATLAB editor, save your changes to the CGT file.

11 Click Apply to update the configuration set.

12 Save your model.

6-57

6 Advanced Code Generation Techniques

13 Generate code. Examine the generated source and/or header files to
confirm that they contain the banners specified by the template(s).

Customizing a Code Generation Template (CGT) File for Custom
Banner Generation

This section describes the sections of a CGT file you need to modify for custom
file banner generation. For a more detailed description of CGT files, see “Code
Generation Template (CGT) Files” on page 6-37.

Custom file banner generation requires modification of one or more of the
following CGT file sections:

e Header section: This section contains comments and tokens for
use in generating a header banner. The header banner precedes
any C or C++ code generated by the model. If the header section
is omitted, no header banner is generated. The following is
the default header section provided with the default CGT file,
matlabroot\toolbox\rtw\targets\ecoder\ert_code_template.cgt.

o0

% Custom file banner (optional)

~

O\O
* o°

* File: %<FileName>

* Real-Time Workshop code generated for Simulink model S%<ModelName>.

* Model version : %<ModelVersion>

* Real-Time Workshop file version 1 %<RTWFileVersion>

* Real-Time Workshop file generated on : %<RTWFileGeneratedOn>
* TLC version 1 %<TLCVersion>

* C source code generated on 1 %<SourceGeneratedOn>

*/

6-58

Custom File Processing

e Trailer section: This section contains comments and tokens for use in
generating a trailer banner. The trailer banner follows any C or C++ code
generated by the model. If the trailer section is omitted, no trailer banner
is generated. The following is the default trailer section provided in the
default CGT file.

%% Custom file trailer (optional)

o
o°

/* File trailer for Real-Time Workshop generated code.
*

* [EOF]
*/

The header and trailer sections typically use TLC variables (such as
%<ModelVersion>) as tokens. During code generation, tokens are replaced
with values in the generated code. See Summary of Tokens for File Banner
Generation on page 6-60 for a list of available tokens.

The following code excerpt shows a modified banner section based on the
default CGT. This template inserts a copyright notice into the banner.

o

% Custom file banner (optional)

o
o°

~
*

* File: %<FileName>

* Copyright 2003 ABC Corporation, Inc.

* Real-Time Workshop code generated for Simulink model %<ModelName>.

* Model version 1 %<ModelVersion>

* Real-Time Workshop file version : %<RTWFileVersion>

* Real-Time Workshop file generated on : %<RTWFileGeneratedOn>
* TLC version 1 %<TLCVersion>

* C source code generated on 1 %<SourceGeneratedOn>

*/

6-59

6 Advanced Code Generation Techniques

6-60

The following code excerpt shows a file banner generated from the
rtwdemo_udt model using the above template.

* File: rtwdemo_udt.c

* Copyright 2003 ABC Corporation, Inc.

* Real-Time Workshop code generated for Simulink model rtwdemo_udt.

* Model version

:1.188

* Real-Time Workshop file version : 6.0 (R14) 13-Nov-2003
* Real-Time Workshop file generated on : Tue Nov 18 16:46:48 2003

* TLC version

: 6.0 (Nov 15 2003)

* C source code generated on : Tue Nov 18 16:46:52 2003

*

*/

Summary of Tokens for File Banner Generation

FileName Name of the generated file (for example,
“rtwdemo_udt.c").

FileType Either "source" or "header". Designates
whether generated file is a .c or .cpp file or an
.h file.

FileTag Given filenames file.c or .cpp and file.h,
the file tags are "file c" and "file_h",
respectively.

ModelName Name of generating model.

ModelVersion Version number of model.

RTWFileVersion Version number of model . rtw file.

RTWFileGeneratedOn Timestamp of model . rtw file.

TLCVersion Version of Target Language Compiler.

SourceGeneratedOn Timestamp of generated file.

Optimizing Your Model with Configuration Wizard Blocks and Scripts

Optimizing Your Model with Configuration Wizard Blocks

and Scripts

® “Overview” on page 6-61

® “Configuration Wizards vs. Auto-Configuring Targets” on page 6-63
* “Adding a Configuration Wizard Block to Your Model” on page 6-64
® “Using Configuration Wizard Blocks” on page 6-67

® “Creating a Custom Configuration Wizard Block” on page 6-67

Overview

Real-Time Workshop Embedded Coder provides a library of Configuration
Wizard blocks and scripts to help you configure and optimize code generation
from your models quickly and easily.

The library provides a Configuration Wizard block you can customize, and
four preset Configuration Wizard blocks.

Block Description

Custom M-file Automatically update active
configuration parameters of parent
model using custom M-file

ERT (optimized for fixed-point) Automatically update active
configuration parameters of parent
model for ERT fixed-point code

generation

ERT (optimized for floating-point) Automatically update active
configuration parameters of parent
model for ERT floating-point code
generation

6-61

6 Advanced Code Generation Techniques

6-62

Block
GRT (debug for fixed/floating-point)

GRT (optimized for
fixed/floating-point)

Description

Automatically update active
configuration parameters of
parent model for GRT fixed- or
floating-point code generation with
debugging enabled

Automatically update active
configuration parameters of parent
model for GRT fixed- or floating-point
code generation

Optimizing Your Model with Configuration Wizard Blocks and Scripts

These are shown in the figure below.

E!Lihrary: rtweclib/Configuration Wizards - |EI|1|

File Edit Yiew Format Help

Configure hModel Configure Model
(double-click to activate) (double-click to activate)

ERT (optimized for fixed-point) ERT (optimized for floating-point

Configure hModel Configure Model
(double-click to activate) (double-click to activate)

GRT (optimized for fixedfloating-point) GRT (debug for fixedfloating-paint)

Configure Model
(double-click to activate)

Customn M-file

When you add one of the preset Configuration Wizard blocks to your model
and double-click it, a predefined M-file script executes and configures

all parameters of the model’s active configuration set without manual
intervention. The preset blocks configure the options optimally for one of the
following cases:

* Fixed-point code generation with the ERT target

* Floating-point code generation with the ERT target

* Fixed/floating-point code generation with TLC debugging options enabled,
with the GRT target.

* Fixed/floating-point code generation with the GRT target

The Custom block is associated with an example M-file script that you can
adapt to your requirements.

You can also set up the Configuration Wizard blocks to invoke the build
process after configuring the model.

Configuration Wizards vs. Auto-Configuring Targets

Configuration Wizard scripts and auto-configuring targets offer two different
approaches to automatic model configuration. You need to consider issues of

6-63

6 Advanced Code Generation Techniques

6-64

complexity and the needs of your end users when choosing one or the other
approach.

Auto-configuring targets (described in “Auto-Configuring Models for Code
Generation” on page 6-22 and “Generating Efficient Code with Optimized
ERT Targets” on page 6-26) execute a back end configuration function (hook
file) during the code generation process. The auto-configuration function in
effect bypasses the options set in the model’s configuration set, which are
saved and restored transparently across the build process.

Configuration Wizards, on the other hand, execute a configuration script
independently from the code generation process. The Configuration Wizard
script actually changes the model’s active configuration set. These changes
are then visible in the GUI and can be saved with the model.

It is generally simpler to create a custom Configuration Wizard script than
to create a custom auto-configuring target. Creating a Configuration Wizard
script, in many cases, requires only simple modifications to an existing
template. Creating a custom auto-configuring target, on the other hand,
requires some knowledge of the internals of the build process.

Adding a Configuration Wizard Block to Your Model

This section describes how to add one of the preset Configuration Wizard
blocks to a model.

The Configuration Wizard blocks are available in the Real-Time Workshop
Embedded Coder block library. To use a Configuration Wizard block:

1 Open the model that you want to configure.

2 Open the Real-Time Workshop Embedded Coder library by typing the
command rtweclib.

Optimizing Your Model with Configuration Wizard Blocks and Scripts

3 The top level of the library is shown below.

E! Library: rtweclib ;Iglll
File Edit View Format Help

4 Double-click the Configuration Wizards icon. The Configuration Wizards

sublibrary opens, as shown below.

E! Library: rtweclib/Configuration Wizards
File Edit WYiew Formatb Help

=10l x|

Custom h-file

ERT (optimized for fixed-paint) ERT (optimized for floating-point)

GRT (optimized for fixedifloating-point) GRT (debug for fixedfloating-point)

6-65

6 Advanced Code Generation Techniques

6-66

5 Select the Configuration Wizard block you want to use and drag and

drop it into your model. In the figure below, the ERT (optimized for
fixed-point) Configuration Wizard block has been added to the model.

INC

LT

A
+./ sum_out
i

equal_to_count

¥

£

T 3——win Outl—w 1

Input Ourtpurt
Amplifier

switch_out

3 M-

Configure hiodel
(double-click to activate)

ERT (optimized for fixed-point)

6 You can set up the Configuration Wizard block to invoke the build process

after executing its configuration script. If you do not want to use this
feature, skip to the next step.

If you want the Configuration Wizard block to invoke the build process,
right-click on the Configuration Wizard block in your model, and select
Mask Parameters... from the context menu. Then, select the Invoke
build process after configuration option, as shown below.

EBlock Parameters: Custom M-file x|

—ModelConfiguration'wizard [mask] [link]

Automatically update the active configuration parameters of the parent model uzing a
predefined or cugtom M-file. Double-clicking the block invokes the configuration and
optionally builds the model.

=

Configure the model for: [{2gINE

Configuration function:

Irtwsampleconfig

[Irnvoke build process after configuration

Ok I Lancel Help Apply

Optimizing Your Model with Configuration Wizard Blocks and Scripts

7 Click Apply, and close the Mask Parameters dialog box.

Note You should not change the Configure the model for option, unless
you want to create a custom block and script. In that case, see “Creating a
Custom Configuration Wizard Block” on page 6-67.

8 Save the model.

9 You can now use the Configuration Wizard block to configure the model, as
described in the next section.

Using Configuration Wizard Blocks

Once you have added a Configuration Wizard block to your model, just
double-click the block. The script associated with the block automatically
sets all parameters of the active configuration set that are relevant to code
generation (including selection of the appropriate target). You can verify that
the options have changed by opening the Configuration Parameters dialog box
and examining the settings.

If the Invoke build process after configuration option for the block was
selected, the script also initiates the code generation and build process.

Note You can add more than one Configuration Wizard block to your model.
This provides a quick way to switch between configurations.

Creating a Custom Configuration Wizard Block

The Custom Configuration Wizard block is shipped with an associated
M-file script, rtwsampleconfig.m. The script is located in the directory
matlabroot/toolbox/rtw/rtw.

Both the block and the script are intended to provide a starting point for
customization. This section describes:

* How to create a custom Configuration Wizard block linked to a custom
script.

6-67

6 Advanced Code Generation Techniques

6-68

® Operation of the example script, and programming conventions and
requirements for a customized script.

¢ How to run a configuration script from the MATLAB command line
(without a block).

Setting Up a Configuration Wizard Block

This section describes how to set up a custom Configuration Wizard block and
link it to a script. If you want to use the block in more than one mode, it is
advisable to create a Simulink library to contain the block.

To begin, make a copy of the example script for later customization:

1 Create a directory to store your custom script. This directory should not
be anywhere inside the MATLAB directory structure (that is, it should
not be under matlabroot).

The discussion below refers to this directory as /my_wizards.
2 Add the directory to the MATLAB path. Save the path for future sessions.

3 Copy the example script
(matlabroot/toolbox/rtw/rtw/rtwsampleconfig.m)
to the /my_wizards directory you created in the previous steps. Then,
rename the script as desired. The discussion below uses the name
my_configscript.m.

4 Open the example script into the MATLAB editor. Scroll to the end of the
file and enter the following line of code:

disp('Custom Configuration Wizard Script completed.');

This statement is used later as a test to verify that your custom block has
executed the script.

5 Save your script and close the MATLAB editor.

The next step is to create a Simulink library and add a custom block to it.
Do this as follows:

Optimizing Your Model with Configuration Wizard Blocks and Scripts

1 Open the Real-Time Workshop Embedded Coder library and the
Configuration Wizards sublibrary, as described in “Adding a Configuration
Wizard Block to Your Model” on page 6-64.

2 Select New Library from the File menu of the Configuration Wizards
sublibrary window. An empty library window opens.

3 Select the Custom M-file block from the Configuration Wizards sublibrary
and drag and drop it into the empty library window.

4 To distinguish your custom block from the original, edit the Custom M-file
label under the block as desired.

5 Select Save as from the File menu of the new library window; save the
library to the /my_wizards directory, under your library name of choice. In
the figure below, the library has been saved as my_button, and the block
has been labeled my wizard M-file.

=loix

File Edit Yiew Format Help

DeEdE i mEE T

Configure Model
(double-click to activate)

my_wvizard hd-file

Ready 100% Unlocked v

The next step is to link the custom block to the custom script:

1 Right-click on the block in your model, and select Mask Parameters from
the context menu. Notice that the Configure the model for menu set to
Custom. When Custom is selected, the Configuration function edit field
is enabled, so you can enter the name of a custom script.

2 Enter the name of your custom script into the Configuration function
field. (Do not enter the .m filename extension, which is implicit.) In the
figure below, the script name my_configscript has been entered into the

6-69

6 Advanced Code Generation Techniques

Configuration function field. This establishes the linkage between the
block and script.

EBlock Parameters: my_wizard M-file x|

—ModelConfiguration'wizard [mask] [link]

Automatically update the active configuration parameters of the parent model uzing a
predefined or cugtom M-file. Double-clicking the block invokes the configuration and
optionally builds the model.

Configure the model for: | Custom LI

Configuration function:

Imy_configsc:ript

[Invoke build process after configuration

Ok I Lancel | Help | Apply |

3 Note that by default, the Invoke build process after configuration
option is deselected. You can change the default for your custom block by
selecting this option. For now, leave this option deselected.

4 Click Apply and close the Mask Parameters dialog box.
5 Save the library.

6 Close the Real-Time Workshop Embedded Coder library and the
Configuration Wizards sublibrary. Leave your custom library open for use
in the next step.

6-70

Optimizing Your Model with Configuration Wizard Blocks and Scripts

Now, test your block and script in a model. Do this as follows:

1 Open the vdp demo model by typing the command:

vdp

2 Open the Configuration Parameters dialog box and view the Real-Time
Workshop options by clicking on the Real-Time Workshop entry in the
list in the left pane of the dialog box.

3 Observe that the vdp demo is configured, by default, for the GRT target.
Close the Configuration Parameters dialog box.

4 Select your custom block from your custom library. Drag and drop the block
into the vdp model.

5 In the vdp model, double-click your custom block.

6 In the MATLAB window, you should see the test message you previously
added to your script:

Custom Configuration Wizard Script completed.

This indicates that the custom block successfully executed the script.

7 Reopen the Configuration Parameters dialog box and view the Real-Time
Workshop options again. You should now see that the model is configured

for the ERT target.

Before applying further edits to your custom script, proceed to the next section
to learn about the operation and conventions of Configuration Wizard scripts.

6-71

6 Advanced Code Generation Techniques

6-72

Creating a Configuration Wizard Script

You should create your custom Configuration Wizard script by copying and
modifying the example script, rtwsampleconfig.m. This section provides
guidelines for modification.

The Configuration Function. The example script implements a single
function without a return value. The function takes a single argument cs:

function rtwsampleconfig(cs)

The argument cs is a handle to a proprietary object that contains information
about the model’s active configuration set. Simulink obtains this handle

and passes it in to the configuration function when the user double-clicks a
Configuration Wizard block.

Your custom script should conform to this prototype. Your code should use
cs as a “black box” object that transmits information to and from the active
configuration set, using the accessor functions described below.

Accessing Configuration Set Options. To set options or obtain option
values, use the Simulink set_param and get_param functions (if you are
unfamiliar with these functions, see the Simulink Reference document).

Option names are passed in to set_param and get_param as strings specifying
an internal option name. The internal option name is not always the same as
the corresponding option label on the GUI (for example, the Configuration
Parameters dialog box). The example configuration accompanies each
set_param and get_param call with a comment that correlates internal option
names to GUI option labels. For example:

set_param(cs, 'LifeSpan','1'); % Application lifespan (days)

To obtain the current setting of an option in the active configuration set,
call get_param. Pass in the cs object as the first argument, followed by
the internal option name. For example, the following code excerpt tests the
setting of the Generate HTML report option:

if strcmp(get_param(cs, 'GenerateReport'), 'on')

Optimizing Your Model with Configuration Wizard Blocks and Scripts

To set an option in the active configuration set, call set _param. Pass in the
cs object as the first argument, followed by one or more parameter/value
pairs that specify the internal option name and its value. For example, the
following code excerpt turns off the Support absolute time option:

set_param(cs, 'SupportAbsoluteTime', 'off');

Selecting a Target. A Configuration Wizard script must select a target
configuration. The example script uses the ERT target as a default. The script
first stores string variables that correspond to the required System target
file, Template makefile, and Make command settings:

stf = 'ert.tlc';
tmf = 'ert_default_tmf';
mc = 'make_rtw';

The system target file is selected by passing the cs object and the stf string
to the switchTarget function:

switchTarget(cs,stf,[]);
The template makefile and make command options are set by set_param calls:

set_param(cs, 'TemplateMakefile',tmf);
set_param(cs, 'MakeCommand',mc) ;

To select a target, your custom script needs only to set up the string variables
stf, tmf, and mc and pass them to the appropriate calls, as above.

Obtaining Target and Configuration Set Information. The following
utility functions and properties are provided so that your code can obtain
information about the current target and configuration set, with the cs object:

e isValidParam(cs, 'option'): The option argument is an internal option
name. isValidParam returns true if option is a valid option in the context
of the active configuration set.

® getPropEnabled(cs, 'option'): The option argument is an internal
option name. Returns true if this option is enabled (that is, writable).

® IsERTTarget property: Your code can detect whether or not the currently
selected target is derived from the ERT target is selected by checking the
IsERTTarget property, as follows:

6-73

6 Advanced Code Generation Techniques

isERT = strcmp(get_param(cs, 'IsERTTarget'),'on');

This information can be used to determine whether or not the script should
configure ERT-specific options, for example:

if isERT
set_param(cs, 'ZeroExternalMemoryAtStartup', 'off');
set_param(cs, 'ZeroInternalMemoryAtStartup', 'off');
set_param(cs, 'InitFltsAndDblsToZero', 'off');
set_param(cs, 'InlinedParameterPlacement’,...

"NonHierarchical');
set_param(cs, 'NoFixptDivByZeroProtection','on')
end

Invoking a Configuration Wizard Script from the MATLAB
Command Prompt

Like any other M-file, Configuration Wizard scripts can be run from the
MATLAB command prompt. (The Configuration Wizard blocks are provided
as a graphical convenience, but are not essential.)

Before invoking the script, you must open a model and instantiate a cs object
to pass in as an argument to the script. After running the script, you can
invoke the build process with the rtwbuild command. The following example
opens, configures, and builds a model.

open my_model;

cs = getActiveConfigSet ('my_model');
rtwsampleconfig(cs);
rtwbuild('my_model');

6-74

Replacement of STF_rtw_info_hook Mechanism

Replacement of STF_rtw_info_hook Mechanism

Prior to MATLAB Release 14, custom targets supplied target-specific
information with a hook file (referred to as STF_rtw_info_hook.m).
The STF_rtw_info_hook specified properties such as word sizes for
integer data types (for example, char, short, int, and long), and C
implementation-specific properties of the custom target.

The STF_rtw_info_hook mechanism has been replaced by the Hardware
Implementation pane of the Configuration Parameters dialog box. Using
this dialog box, you can specify all properties that were formerly specified in
your STF_rtw_info_hook file.

For backward compatibility, existing STF_rtw_info_hook files continue to
operate correctly. However, you should convert your target and models

to use of the Hardware Implementation pane. See the “Hardware
Implementation Options” section of the Real-Time Workshop documentation.

6-75

6 Advanced Code Generation Techniques

6-76

Optimizing Task Scheduling for Multirate Multitasking
Models on RTOS Targets

® “Overview” on page 6-76
® “Using rtmStepTask” on page 6-77

e “Task Scheduling Code for Multirate Multitasking Model on VxWorks
Target” on page 6-77

® “Suppressing Redundant Scheduling Calls” on page 6-78

Overview

Using the rtmStepTask macro, targets that employ the task management
mechanisms of an RTOS can eliminate certain redundant scheduling calls
during the execution of tasks in a multirate, multitasking model, thereby
improving performance of the generated code.

To understand the optimization that is available for an RTOS target, consider
how the ERT target schedules tasks for bareboard targets (where no RTOS

is present). The ERT target maintains scheduling counters and event flags
for each sub-rate task. The scheduling counters are implemented within the
real-time model (rtM) data structure as arrays, indexed on task identifier
(tid).

The scheduling counters are updated by the base-rate task. The counters
are, in effect, clock rate dividers that count up the sample period associated
with each sub-rate task. When a given sub-rate counter reaches a value
that indicates it has a hit, the sample period for that rate has elapsed and
the counter is reset to zero. When this occurs, the sub-rate task must be
scheduled for execution.

The event flags indicate whether or not a given task is scheduled

for execution. For a multirate, multitasking model, the event flags

are maintained by the model SetEventsForThisBaseStep function.
model SetEventsForThisBaseStep invokes the macro rtmStepTask to
test the value of each counter. rtmStepTask returns TRUE when a counter
indicates that a task’s sample period has elapsed. When this occurs,
model_SetEventsForThisBaseStep sets the event flag for that task.

Optimizing Task Scheduling for Multirate Multitasking Models on RTOS Targets

On each time step, the counters and event flags are updated and the base-rate
task executes. Then, the scheduling flags are checked in tid order, and any
task whose event flag is set is executed. This ensures that tasks are executed
in order of priority.

For bareboard targets that cannot rely on an external RTOS, the event

flags are mandatory to allow overlapping task preemption. However, an
RTOS target uses the operating system itself to manage overlapping task
preemption, making the maintenance of the event flags redundant. An RTOS
target can eliminate the call to model SetEventsForThisBaseStep, and
examine the counters by invoking rtmStepTask directly.

Using rimStepTask

The rtmStepTask macro is defined in model.h and its syntax is as follows:

boolean task_ready = rtmStepTask(rtm, idx);

The arguments are:

® rtm: pointer to the real-time model structure (rtM)

e idx: task identifier (tid) of the task whose scheduling counter is to be
tested

rtmStepTask returns TRUE if the task’s scheduling counter equals zero,
indicating that the task should be scheduled for execution on the current time
step. Otherwise, it returns FALSE.

If your target supports the Generate an example main program
option, you can generate calls to rtmStepTask using the TLC function
RTMTaskRunsThisBaseStep.

Task Scheduling Code for Multirate Multitasking
Model on VxWorks Target

The following task scheduling code, from ertmainlib.tlc, is designed

for multirate multitasking operation on a VxWorks target. The example
uses the TLC function RTMTaskRunsThisBaseStep to generate calls to the
rtmStepTask macro. A loop iterates over each subrate task, and rtmStepTask

6-77

6 Advanced Code Generation Techniques

is called for each task. If rtmStepTask returns TRUE, the VxWorks semGive ()
function is called, and VxWorks schedules the task to run.

%assign ifarg = RTMTaskRunsThisBaseStep("i")
for (1 = 1; 1 < S<FcnNumST()>; i++) {
if (%<ifarg>) {
semGive (taskSemList[i]);
if (semTake(taskSemList[i],NO WAIT) != ERROR) {
logMsg("Rate for SubRate task %d is too fast.\n",i,0,0,0,0,0);
semGive (taskSemList[i]);
}
}
}

Suppressing Redundant Scheduling Calls

Redundant scheduling calls are still generated by default for backward
compatibility. To change this setting and suppress them, add the following
TLC variable definition to your system target file before the %$include
"codegenentry.tlc" statement:

%assign SuppressSetEventsForThisBaseRateFcn = 1

6-78

7

ERT Target Requirements,

Restrictions, and Control
Files

Requirements and Restrictions for Conditions your model must meet
ERT-Based Simulink Models (p. 7-2) for use with Real-Time Workshop
Embedded Coder.

ERT System Target File and Summary of control files used by
Template Makefiles (p. 7-5) Real-Time Workshop Embedded
Coder.

7 T Target Requirements, Restrictions, and Control Files

7-2

Requirements and Restrictions for ERT-Based Simulink

Models

® For code generation with Real-Time Workshop Embedded Coder,

configure your model for the following options on the Solver pane of the
Configuration Parameters dialog box:

= Type: fixed-step
= Solver: You can select any available solver algorithm.

= Tasking mode for periodic sample times: When the model is
single-rate, you must select the SingleTasking or Auto mode. Permitted
Solver Modes for Real-Time Workshop Embedded Coder Targeted
Models on page 2-15 indicates permitted solver modes for single-rate
and multirate models.

If you use blocks that have a dependency on absolute time in a program,
you should properly specify the Application lifespan (days) parameter
on the Optimization pane. (See “Blocks That Depend on Absolute Time”
in the Real-Time Workshop documentation for a list of such blocks.) You
can use these blocks in applications that run for extremely long periods,
with counters that provide accurate and overflow-free absolute time values,
provided that you specify a long enough lifespan. If you are designing a
program that is intended to run indefinitely, specify Application lifespan
(days) as inf. This generates a 64 bit integer counter. For an application
whose sample rate is 1000 MHz, a 64 bit counter will not overflow for more
than 500 years.

® You can use any Simulink blocks in your models, except for blocks not

supported by the Embedded-C format, as follows:
= MATLAB Fcn
= M-file and Fortran S-functions that are not inlined with TLC

Note that use of certain blocks is not recommended for production code
generation for embedded systems. To view a table that summarizes
characteristics of blocks in the Simulink and Fixed-Point block libraries,
execute the following command at the MATLAB command line:

showblockdatatypetable

Requirements and Restrictions for ERT-Based Simulink Models

Refer to the Code Generation Support column of the table and its
footnotes, including the footnote “Not recommended for production code.”

7 T Target Requirements, Restrictions, and Control Files

® You can use both inlined and non-inlined S-functions with Real-Time
Workshop Embedded Coder. However, inlined S-functions are often
advantageous in production code generation, for example in implementing
device drivers. See “Tradeoffs in Device Driver Development” in the

Developing Embedded Targets document for a discussion of the pros and
cons.

ERT System Target File and Template Makefiles

ERT System Target File and Template Makefiles
The Real-Time Workshop Embedded Coder system target file is ert.tlc.

Real-Time Workshop provides template makefiles for the Real-Time Workshop
Embedded Coder in the following development environments:

® ert_bc.tmf — Borland C

® ert_intel.tmf — Intel compiler

e ert_lcc.tmf — LCC compiler

® ert_tornado.tmf — Tornado (VxWorks)

e ert_unix.tmf — UNIX host

® ert_vc.tmf — Visual C

® ert_msvc.tmf — Visual C, project file only

* ert_watc.tmf — Watcom C

7-5

7 T Target Requirements, Restrictions, and Control Files

Examples

Use this list to find examples in the documentation.

A Examples

Data Structures, Code Modules, and Program Execution

“Real-Time Model (rtModel) Data Structure” on page 2-3

“rtModel Accessor Macros” on page 2-4

“Rate Grouping and Rate-Specific model_step Functions” on page 2-17
“Rate Grouping and the Static Main Program” on page 2-27

“Making Your S-Functions Rate Grouping Compliant” on page 2-31

Code Generation

“Controlling Parenthesization” on page 3-40

“Controlling Left-Recursive Expression” on page 3-42

“Negating if Statements” on page 3-42

“Using Virtualized Output Ports Optimization” on page 3-60

“Generating an HTML Code Generation Report” on page 3-65
“Generating an ERT S-Function Wrapper” on page 3-70

“Validating Generated Code on the MATLAB Host Computer Using
Hardware Emulation” on page 3-74

“Validating ERT Production Code on the MATLAB Host Computer Using
Portable Word Sizes” on page 3-75

“Techniques for Exporting Function-Call Subsystems” on page 3-80
“Function-Call Subsystem Export Example” on page 3-82

“Examples of Modular Function Code for Nonvirtual Subsystems” on page
3-93

“model_step Function Prototype Example” on page 3-105

“Sample M Script for Configuring a model_step Function Prototype” on
page 3-113

“Generating a Shared Library Version of Your Model Code” on page 3-119
“Creating Application Code to Load and Use Your Shared Library File” on
page 3-119

Custom Storage Classes

“Setting Custom Storage Class Properties” on page 4-9
“Generating Code with CSCs” on page 4-10

Memory Sections

“Creating Packages with CSC Definitions” on page 4-31

“Defining Advanced Custom Storage Class Types” on page 4-35
“Example of Generated Code with GetSet Custom Storage Class” on page
4-40

“Assigning a Custom Storage Class to Data” on page 4-51

Memory Sections

“Requirements for Defining Memory Sections” on page 5-4
“Defining Memory Sections” on page 5-6

“Applying Memory Sections” on page 5-10

“Examples of Generated Code with Memory Sections” on page 5-18

Advanced Code Generation

“Specifying Type Definition Location for User-Defined Data Types” on
page 6-6

“Example Build Process Customization Using sl_customization.m” on page
6-20

“Using set_param to Set Model Parameters” on page 6-22

“Automatic Model Configuration Using ert_make_rtw_hook” on page 6-23
“Using the Optimized ERT Targets” on page 6-31

“Generating Source and Header Files with a Custom File Processing (CFP)
Template” on page 6-43

“Creating a Custom File Banner Template” on page 6-57

“Customizing a Code Generation Template (CGT) File for Custom Banner
Generation” on page 6-58

“Adding a Configuration Wizard Block to Your Model” on page 6-64
“Creating a Custom Configuration Wizard Block” on page 6-67

“Task Scheduling Code for Multirate Multitasking Model on VxWorks
Target” on page 6-77

A Examples

A

absolute time 3-34

ASAP?2 file generation 3-39

auto-configuring targets
purpose of 6-22

C

code generation options
Application lifespan (days) 3-54
code style pane 3-40
Configure Functions 3-37
Create Simulink (S-Function) block 3-38
Custom comments 3-21
Data exchange 3-38
Data initialization 3-53
Enable portable word sizes 3-38
External mode 3-63
File customization template 3-44
Fixed-point exception protection 3-54
Generate an example main program 3-44
Generate HTML report 3-17
Generate reusable code 3-35
Generate scalar inlined parameters 3-23
GRT compatible call interface 3-35
Identifier format control 3-22
if statements 3-42
Ignore custom storage classes 3-18
Include comments 3-19
Include hyperlinks to model 3-17
Launch report automatically 3-18
MAT-file logging 3-38

clearing 3-59

MAT-file variable name modifier 3-39
Maximum identifier length 3-23
Minimum mangle length 3-23
Parameter structure 3-52
parenthesis level 3-40
Pass root-level I/O as 3-36
recursive expressions 3-42

Requirements in block comments 3-21
Reusable code error diagnostic 3-36
Simulink block descriptions 3-20
Simulink data object descriptions 3-20
Single output/update function 3-35
clearing 2-30
Stateflow object descriptions 3-21
Support absolute time 3-34
Support complex numbers 3-33
Support continuous time 3-34
for using continuous time blocks 3-5
limitations 3-71
Support floating-point numbers 3-33
Support non-finite numbers 3-33
Support non-inlined S-functions 3-34
Suppress error status in real-time model
data structure 3-37
Target floating-point math environment 3-32
Terminate function required 3-35
code generation report 3-65
code modules, generated 2-5
code style
controlling 3-40
code templates
example of use 6-43
generating code with 6-43
structure of 6-42
summary of API 6-52
code, user-written 2-8
Configuration Parameters dialog box 3-4
Configuration Wizard buttons 6-61
custom code generation
of file banners 6-55
with code templates 6-41
custom file processing (CFP) template 3-44
custom storage classes
assigning to data 4-51
code generation with 4-51
instance-specific attributes 4-49

Index-1

Index

D

Data exchange options
External mode 3-39
Generate ASAP2 file 3-39

Generate C API for parameters/signals 3-39

data initialization
of floats and doubles 3-53
of internal states 3-53
of root-level I/O ports 3-53
data structures
real-time model 2-3
data templates 3-43

demos for Real-Time Workshop Embedded

Coder 1-9
dialog boxes
Model Step Functions 3-102

elapsed time 3-34

entry points, model 2-24

ERT target
optimized for fixed-point 6-26
optimized for floating-point 6-26

ert_main.c 2-26

ert_main.cpp 2-26

External mode support 3-63

F

file banners, generation of 6-55
file packaging 2-5

G

generated code

modules 2-5
GetSet custom storage class 4-39
guidelines

MISRA-C 3-68

Index-2

H

Hardware Implementation parameters
configuration of 3-56
hook files
STF_make_rtw_hook
auto-configuring models with 6-23
customizing build process with 6-9
HTML code generation report 3-65

identifier format control parameters 3-26

identifier format control tokens 3-24

installation of Real-Time Workshop Embedded
Coder 1-8

integer-only code 3-59

integer-only code generation 3-59

interrupts, servicing 2-12

M

main program (ert_main)
generated 2-9
modifying 2-14
operation of 2-13
static module 2-26
VxWorks example 2-21
math, floating-point 3-32
MISRA-C guidelines 3-68
model entry points 2-24
modifying rt_OneStep 2-20

name mangling 3-26

P

parameter structure
hierarchical 3-52
nonhierarchical 3-52

Index

parenthesization level S
option for setting 3-40 S-function wrapper generation 3-69
program execution option for 3-38
main program 2-13 solver modes, permitted 2-15
rt_OneStep 2-14 source code files, generated 2-5
multirate multitasking operation 2-16 stack space allocation 3-61
multirate singletasking operation 2-19 STF make rtw hook function
reentrancy 2-18 arguments to 6-11
single-rate singletasking operation 2-15 system target file (STF)
pure integer code 3-59 ERT 7-5
and external mode 3-64
R T
) task identifier (tid) 2-17
rate grouping 2-17 template makefiles 7-5
real-time model data structure 2-3 tid 2-17
reentrant code 3-35 timer interrupts 2-12
requirements for Real-Time Workshop Embedded
Coder programs 7-2
restrictions on Real-Time Workshop Embedded Vv
Coder programs 7-2 virtualized output port optimization 3-60
reusable code 3-35 VxWorks deployment example 2-21

Index-3

	toc
	Getting Started
	What Is Real-Time Workshop Embedded Coder?
	Real-Time Workshop Embedded Coder Feature Summary
	What You Need to Know to Use This Product
	Prerequisites
	Real-Time Workshop Embedded Coder Documentation Collection
	Related Documentation

	Installing Real-Time Workshop Embedded Coder
	Real-Time Workshop Embedded Coder Demos

	Data Structures, Code Modules, and Program Execution
	Real-Time Model (rtModel) Data Structure
	Overview
	rtModel Accessor Macros

	Code Modules
	Introduction
	Generated Code Modules
	User-Written Code Modules

	Generating the Main Program Module
	Program Execution Overview
	Stand-Alone Program Execution
	Overview
	Main Program
	Overview of Operation
	Guidelines for Modifying the Main Program

	rt_OneStep
	Overview of Operation
	Single-Rate Singletasking Operation
	Multirate Multitasking Operation
	Multirate Singletasking Operation
	Guidelines for Modifying rt_OneStep

	VxWorks Example Main Program Execution
	Overview
	Task Management
	Single-Rate Singletasking Operation
	Multirate Multitasking Operation
	Multirate Singletasking Operation

	Model Entry Points
	Static Main Program Module
	Overview
	Rate Grouping and the Static Main Program
	Modifying the Static Main Program

	Rate Grouping Compliance and Compatibility Issues
	Main Program Compatibility
	Making Your S-Functions Rate Grouping Compliant
	Listing 1: Outputs Code Generation Without Rate Grouping
	Listing 2: Outputs Code Generation With Rate Grouping

	Code Generation Options and Optimizations
	Accessing the ERT Target Options
	Viewing ERT Target Options in the Configuration Parameters Dialo

	Support for Continuous Time Blocks, Continuous Solvers, and Stop
	Continuous Block Support
	Continuous Solver Support
	Stop Time Support

	Mapping Application Requirements to Configuration Options
	Guide to ERT Target Options
	Introduction
	Real-Time Workshop Pane
	Target Selection Subpane
	Documentation Subpane
	Build Process Subpane
	Custom Storage Class Subpane

	Comments Pane
	Overall Control Subpane
	Auto Generated Comments Subpane
	Custom Comments Subpane

	Symbols Pane
	Auto-Generated Identifier Naming Rules Subpane
	Simulink Data Object Naming Rules Subpane
	Specifying Identifier Formats
	Name Mangling
	Traceability
	Minimizing Name Mangling
	Model Referencing Considerations
	Exceptions to Identifier Formatting Conventions
	Identifier Format Control Parameters Limitations

	Interface Pane
	Software Environment Subpane
	Code Interface Subpane
	Verification Subpane
	Data Exchange Subpane

	Code Style Pane
	Controlling Parenthesization
	Controlling Left-Recursive Expression
	Negating if Statements

	Templates Pane
	Code Templates and Data Templates Subpanes
	Custom Templates Subpane

	Data Placement Pane
	Data Type Replacement Pane
	Memory Sections Pane
	Optimization Pane
	Code Generation Subpane
	Data Initialization Subpane
	Integer and Fixed-Point Subpane
	Simulation and Code Generation Subpane

	Tips for Optimizing the Generated Code
	Introduction
	Using Auto-Optimized Targets
	Using Configuration Wizard Blocks
	Setting Hardware Implementation Parameters Correctly
	Removing Unnecessary Initialization Code
	Generating Pure Integer Code If Possible
	Disabling MAT-File Logging
	Using Virtualized Output Ports Optimization
	Using Stack Space Allocation Options
	Using External Mode with the ERT Target
	Memory Management
	Generation of Pure Integer Code with External Mode

	Generating an HTML Code Generation Report
	Generating Code Within MISRA-C Guidelines
	Automatic S-Function Wrapper Generation
	Overview
	Generating an ERT S-Function Wrapper
	S-Function Wrapper Generation Limitations

	Verifying Generated Code with Software-in-the-loop Testing
	Overview
	Validating Generated Code on the MATLAB Host Computer Using Hard
	Validating ERT Production Code on the MATLAB Host Computer Using
	Portable Word Sizes Limitations

	Exporting Function-Call Subsystems
	Overview
	Exported Subsystems Demo
	Additional Information
	Requirements for Exporting Function-Call Subsystems
	Requirements for All Exported Subsystems
	Requirements for Exported Virtual Subsystems

	Techniques for Exporting Function-Call Subsystems
	Optimizing Exported Function-Call Subsystems
	Exporting Function-Call Subsystems That Depend on Elapsed Time
	Function-Call Subsystem Export Example
	Function-Call Subsystems Export Limitations

	Nonvirtual Subsystem Modular Function Code Generation
	Overview
	Configuring Nonvirtual Subsystems for Generating Modular Functio
	Examples of Modular Function Code for Nonvirtual Subsystems
	H File Differences for Nonvirtual Subsystem Function Data Separa
	C File Differences for Nonvirtual Subsystem Function Data Separa

	Nonvirtual Subsystem Modular Function Code Limitations

	Controlling model_step Function Prototypes
	Overview
	Model Step Functions Dialog Box
	model_step Function Prototype Example
	Configuring a model_step Function Prototype Programmatically
	Sample M Script for Configuring a model_step Function Prototype
	Configuring a Step Function Prototype for a Nonvirtual Subsystem
	Verifying Generated Code for Customized Step Functions
	model_step Function Prototype Control Limitations

	Creating and Using Host-Based Shared Libraries
	Overview
	Generating a Shared Library Version of Your Model Code
	Creating Application Code to Load and Use Your Shared Library Fi
	Example Application Header File
	Example Application C Code
	Example Application M Script

	Host-Based Shared Library Limitations

	Custom Storage Classes
	Introduction to Custom Storage Classes
	Custom Storage Classes and Simulink Data Objects
	Overview
	Predefined CSCs
	Setting Custom Storage Class Properties
	Generating Code with CSCs
	Set Model Properties
	Instantiate Signal Objects

	Designing Custom Storage Classes
	Overview
	Using the Custom Storage Class Designer
	Selecting a Data Class Package
	Selecting and Maintaining CSC and Memory Section Definitions
	Editing Properties of CSCs
	Editing Memory Section Definitions
	Previewing Generated Code
	Validating CSC Definitions
	Saving Your Definitions

	Creating Packages with CSC Definitions
	Defining Advanced Custom Storage Class Types
	Overview
	Create Your Own Parameter and Signal Classes
	Create a Custom Attributes Class for Your CSC (Optional)
	Write TLC Code for Your CSC
	Register Custom Storage Class Definitions

	GetSet Custom Storage Class for Data Store Memory
	Example of Generated Code with GetSet Custom Storage Class

	Setting Code Generation Options for Custom Storage Classes
	Custom Storage Class Limitations
	Older Custom Storage Classes (Prior to Release 14)
	Simulink.CustomParameter Class
	Simulink.CustomSignal Class
	Instance-Specific Attributes for Older Storage Classes
	Assigning a Custom Storage Class to Data
	Code Generation with Older Custom Storage Classes
	Compatibility Issues for Older Custom Storage Classes
	Converting Older Packages to Use CSC Registration Files

	Memory Sections
	Introduction to Memory Sections
	Overview
	Memory Sections Demo
	Additional Information

	Requirements for Defining Memory Sections
	Defining Memory Sections
	Editing Memory Section Properties
	Specifying the Memory Section Name
	Specifying a Qualifier for Custom Storage Class Data Definitions
	Specifying Comment and Pragma Text
	Surrounding Individual Definitions with Pragmas
	Including Identifier Names in Pragmas

	Applying Memory Sections
	Assigning Memory Sections to Custom Storage Classes
	Applying Memory Sections to Model-Level Functions and Internal D
	Applying Memory Sections to Atomic Subsystems

	Examples of Generated Code with Memory Sections
	Sample ERT-Based Model with Subsystem
	Model-Level Data Structures
	Model-Level Functions
	Subsystem Function

	Advanced Code Generation Techniques
	Introduction
	Code Generation with User-Defined Data Types
	Overview
	Specifying Type Definition Location for User-Defined Data Types
	Omitting a HeaderFile Value
	Specifying a HeaderFile Value

	Using User-Defined Data Types for Code Generation

	Customizing the Target Build Process with the STF_make_rtw Hook
	Overview
	File and Function Naming Conventions
	STF_make_rtw_hook.m Function Prototype and Arguments
	Applications for STF_make_rtw_hook.m
	Using STF_make_rtw_hook.m for Your Build Procedure

	Customizing the Target Build Process with sl_customization.m
	Overview
	Registering Build Process Hook Functions Using sl_customization.
	Variables Available for sl_customization.m Hook Functions
	Example Build Process Customization Using sl_customization.m
	Example 1: sl_customization.m for Real-Time Workshop Build Proce
	Example 2: CustomRTWEntryHook.m
	Example 3: CustomRTWPostProcessHook.m

	Auto-Configuring Models for Code Generation
	Overview
	Utilities for Accessing Model Configuration Properties
	Using set_param to Set Model Parameters

	Automatic Model Configuration Using ert_make_rtw_hook
	ert_make_rtw_hook Limitation

	Using the Auto-Configuration Utilities

	Generating Efficient Code with Optimized ERT Targets
	Overview
	Default ERT Target
	Optimized Fixed-Point ERT Target
	Optimized Floating-Point ERT Target
	Using the Optimized ERT Targets
	Configuring Hardware Implementation Properties
	Generating Code

	Custom File Processing
	Overview
	Custom File Processing Components
	Custom File Processing User Interface Options
	Code Generation Template (CGT) Files
	Default CGT file
	CGT File Structure
	Built-In Tokens and Sections
	Subsections

	Using Custom File Processing (CFP) Templates
	Custom File Processing (CFP) Template Structure
	Generating Source and Header Files with a Custom File Processing
	Generating Code with a CFP Template
	Analysis of the Example CFP Template and Generated Code
	Generating a Custom Section

	Code Template API Summary
	Generating Custom File Banners
	Creating a Custom File Banner Template
	Customizing a Code Generation Template (CGT) File for Custom Ban

	Optimizing Your Model with Configuration Wizard Blocks and Scrip
	Overview
	Configuration Wizards vs. Auto-Configuring Targets
	Adding a Configuration Wizard Block to Your Model
	Using Configuration Wizard Blocks
	Creating a Custom Configuration Wizard Block
	Setting Up a Configuration Wizard Block
	Creating a Configuration Wizard Script
	Invoking a Configuration Wizard Script from the MATLAB Command P

	Replacement of STF_rtw_info_hook Mechanism
	Optimizing Task Scheduling for Multirate Multitasking Models on
	Overview
	Using rtmStepTask
	Task Scheduling Code for Multirate Multitasking Model on VxWorks
	Suppressing Redundant Scheduling Calls

	ERT Target Requirements, Restrictions, and Control Files
	Requirements and Restrictions for ERT-Based Simulink Models
	ERT System Target File and Template Makefiles

	Examples
	Data Structures, Code Modules, and Program Execution
	Code Generation
	Custom Storage Classes
	Memory Sections
	Advanced Code Generation

	Index

	tables
	Real-Time Workshop Embedded Coder File Packaging
	Permitted Solver Modes for Real-Time Workshop Embedded Coder Tar
	Mapping of Application Requirements to Configuration Parameters
	Identifier Format Tokens
	Identifier Format Control Parameter Values
	How Name Mangling Strings Are Computed
	Function Prototype Control Functions
	Summary of Predefined Simulink CSCs for Signal and Parameter Obj
	Summary of Instance-Specific Properties for CSCs
	GetSet Storage Class Properties
	Const, ConstVolatile, and Volatile Storage Classes (Prior to Rel
	ExportToFile, ImportFromFile, and Internal Storage Classes (Prio
	BitField, Define, and Struct Storage Classes (Prior to Release 1
	Additional Properties of Custom Storage Classes (Prior to Releas
	Model-Level Memory Section Assignments and Definitions
	Subsystem-Level Memory Section Assignments and Definitions
	Built-In CGT Tokens and Corresponding Code Sections
	Subsections Defined for Built-In Sections
	Code Template API Functions
	Summary of Tokens for File Banner Generation

